Please wait a minute...
J4  2012, Vol. 46 Issue (4): 604-609    DOI: 10.3785/j.issn.1008-973X.2012.04.005
能源与机械工程     
管内交变流动速度相位侧向分布特性
汤珂, 张玙, 唐文涛, 金滔
浙江大学制冷与低温研究所,浙江 杭州 310027
Transverse phase profile characteristics of oscillatory pipe flow
TANG Ke, ZHANG Yu, TANG Wen-tao, JIN Tao
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

为了研究管内交变流动在流道侧向的速度相位分布特性,采用数值模拟方法针对平板流道内可压缩交变流动进行计算与分析.通过比较流道截面不同位置的速度波以及同一周期内不同相位时刻的速度分布,考察交变流动速度相位沿流道侧向的变化特点及其对速度分布的影响.根据典型计算结果,对瓦伦西数Va和最大雷诺数Remax对速度相位沿流道侧向分布特性的影响进行定性分析.提出定量描述流道侧向速度相位变化规律的评价指标截面平均相位差(CAPD),利用CAPD进一步定量分析Va和Remax对管内交变流动速度相位侧向分布特性的影响.结果表明,CAPD随Va增加而增大;相比于Remax,Va对流道侧向速度相位分布的影响更显著.

关键词: 交变流动速度环状效应相位瓦伦西数最大雷诺数    
Abstract:

Numerical simulation method was used to model and analyze the compressible oscillatory flow inside parallel plate channel in order to study the transverse velocity phase profile characteristics. The variation of velocity phase and its influence on the velocity profiles at the channel cross-section were investigated by comparing the velocity oscillations at different positions of the channel crosssection, and also by comparing the velocity profiles at different phase angles in a period. A qualitative discussion focused on the impact of Valensi number Va and maximum Reynolds number Remax on the phase profile characteristics based on the typical simulation results. An index parameter, crosssectional average phase difference (CAPD), was proposed to quantitatively describe the phase profile characteristics. The impact of Va and Remax on the phase profile characteristics was further quantitatively analyzed with the aid of index parameter CAPD. The analysis indicates that CAPD increases with a rise in Va, which has more significant influence on the transverse velocity phase profiles than Remax.

Key words: oscillatory flow    velocity annular effect    phase    Valensi number    maximum Reynolds number
出版日期: 2012-05-02
:  TB 651  
基金资助:

国家自然科学基金资助项目(50890182);National Natural Science Foundation of China (50890182).

通讯作者: 金滔,男,教授.     E-mail: jintao@zju.edu.cn
作者简介: 汤珂(1978—),男,副教授,从事热声热机和交变流动传热等研究.E-mail: ktang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

汤珂, 张玙, 唐文涛, 金滔. 管内交变流动速度相位侧向分布特性[J]. J4, 2012, 46(4): 604-609.

TANG Ke, ZHANG Yu, TANG Wen-tao, JIN Tao. Transverse phase profile characteristics of oscillatory pipe flow. J4, 2012, 46(4): 604-609.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2012.04.005        http://www.zjujournals.com/xueshu/eng/CN/Y2012/V46/I4/604

[1] RICHARDSON E G, TYLER E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established [C]∥Proceedings of the Physical Society. London: Institute of Physics and the Physical Society, 1929, 42(1): 1-15.
[2] ZHAO T S, CHENG P. Heat transfer in oscillatory flows [C]∥Annular Review of Heat Transfer. New York: Begell House, 1998, 9: 359-420.
[3] SERT C, BESKOK A. Numerical simulation of reciprocating flow forced convection in twodimensional channels [J]. Journal of Heat Transfer, 2003, 125(3): 403-412.
[4] WANG Y, HE Y L, TANG G H, et al. Simulation of twodimensional oscillating flow using the Lattice Boltzmann method [J]. International Journal of Modern Physics C, 2006, 17(5): 615-630.
[5] SHI L, YU Z B, JAWORSKI A J. Application of laserbased instrumentation for measurement of timeresolved temperature and velocity fields in the thermoacoustic system [J]. International Journal of Thermal Science, 2010, 49(9): 1688-1701.
[6] JAWORSKI A J, MAO X A, MAO X R, et al. Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions [J]. Experimental Thermal and Fluid Science, 2009, 33(3): 495-502.
[7] TANG K, ZHANG Y, LIN X G, et al. Hydrodynamic and thermal development of compressible oscillatory flow inside circular channel [J]. Cryogenics, 2011, 51(3): 139-145.
[8] ANDERSON J D. Computational fluid dynamics [M]. New York: McGrawHill, 1995: 76-77.
[9] HINO M, SAWAMOTO M, TAKASU S. Experiments on transition to turbulence in an oscillatory pipe flow [J]. Journal of Fluid Mechanics, 1976, 75(2): 193-207.

[1] 李新, 肖龙, 刘国梁, 邵雨亭, 陈国柱. 基于相位补偿和交叉前馈补偿的VSG功率振荡抑制策略[J]. 浙江大学学报(工学版), 2018, 52(3): 569-576.
[2] 劳立明, 陈英龙, 赵玉刚, 周华. 跟踪微分器的等效线性分析及优化[J]. 浙江大学学报(工学版), 2018, 52(2): 224-232.
[3] 许文媛, 孟濬, 赵夕朦. 基于高速摄像机的动态血压非接触获取[J]. 浙江大学学报(工学版), 2017, 51(10): 2077-2083.
[4] 周一览. 过调制技术在光纤陀螺寻北中的应用[J]. 浙江大学学报(工学版), 2015, 49(9): 1817-1820.
[5] 邹云鹏, 康雁. 相位对比磁共振序列中的扰相梯度优化[J]. 浙江大学学报(工学版), 2015, 49(6): 1055-1060.
[6] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2015, 49(4): 792-797.
[7] 王冠楠,孙黎滢,甘德强,王彬彬,辛焕海. 电力系统稳定器设计的广义相位补偿法[J]. 浙江大学学报(工学版), 2014, 48(7): 1295-1303.
[8] 王剑,胡锡幸,郭吉丰. 二自由度超声波电机位姿检测与控制[J]. 浙江大学学报(工学版), 2014, 48(5): 871-876.
[9] 陈杏藩, 曾宪超, 周虎,王磊. 电光相位调制器半波电压闭环测量方法[J]. J4, 2014, 48(3): 555-561.
[10] 何为, 夏灵. 基于掩码的区域增长相位解缠方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1-2.
[11] 汪樟海,陈杏藩. 光纤陀螺随机游走优化技术[J]. J4, 2013, 47(3): 554-557.
[12] 陈灵光, 李培玉, 孙大成, 夏军. 基于相位一致性的转炉出钢下渣检测方法[J]. J4, 2013, 47(2): 216-222.
[13] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[14] 尹喜珍, 马成炎, 叶甜春, 肖时茂, 于云丰. 高灵敏度GNSS接收机频率合成器设计[J]. J4, 2013, 47(1): 70-76.
[15] 张鹏, 钱良, 杨峰. 基于载波相位的运动平台区域定位增强技术[J]. J4, 2012, 46(1): 123-129.