Please wait a minute...
J4  2011, Vol. 45 Issue (9): 1680-1687    DOI: 10.3785/j.issn.1008-973X.2011.09.027
土木工程     
超长大体积混凝土地下结构温度效应的确定及仿真
潘金龙1,齐长雨1,黄毅方1,吴宏雷2
1.东南大学 混凝土及预应力混凝土教育部重点实验室,江苏 南京210096;
2.国核电力规划设计研究院,北京100094
Determination and simulation of temperature effect
 on super-long and underground mass concrete structure
PAN Jin-long1, QI Chang-yu1, HUANG Yi-fang1, WU Hong-lei2
1.Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeats University,
Nanjing 210096,China; 2.State Nuclear Electric Power Planning Design and Research Institute, Beijing 100094,China
 全文: PDF 
摘要:

为了防止超长钢筋混凝土或者大体积混凝土结构出现温度裂缝而降低结构的耐久性能,需要对结构进行温度场和温度应力分析.基于热传导的基本理论阐述了超长大体积混凝土结构地下室温度场确定的方法,并以某实际超长大体积混凝土结构的地下室为例,确定了其结构内外部温度边界条件的取值,运用有限元软件ANSYS模拟了其运行期升温和降温2种最不利工况下的结构温度场,并对结构进行了温度应力计算分析.结果表明:对于超长结构或者大体积混凝土结构,在构件厚度方向存在温度梯度变化,在构件结点处也存在着分布复杂的温度场;离结构刚度中心越远,温度变形量越大;在墙转角、墙板接触、洞口下方均存在温度应力集中现象,且应力从这些地方向周围逐渐减小.

关键词: 超长混凝土结构大体积混凝土数值模拟温度场温度应力    
Abstract:

To prevent thermal cracks caused by temperature changes in superlength concrete structures or massive concrete structures, this work defined the thermal boundary conditions and analyzed the thermal stress of the structures.Based on the basic theory of thermal conduction, a method to define the environment temperature that the structure served in was described. The basement of an actual super-long concrete structure was taken as an example to illustrate the method. The thermal boundary conditions were determined. Then, general finite element analysis was performed to on ANSYS simulate the thermal field of the structure under two worst cases including both temperature rising and temperature reduction. The calculation and analysis results of thermal stress showed that: the thermal stress gradient distribution varied along the thickness on the concrete members of the super-long structure, and the thermal fields in the joints of the concrete members were complex; the thermal deformation tended to be larger in the members further away from the center of stiffness; the stress concentration was distinctly in the turners of wall, interactions of wall and plate, under parts of hole, and the stress decreased as distance increased from the parts mentioned above.

Key words: super-long concrete structure    massive concrete structure    numerical stimulation    thermal field         thermal stress
出版日期: 2011-10-08
:  TU 354  
基金资助:

国家“973”重大基础研究计划资助项目(2009CB623202);国家自然科学基金资助项目(50808043);教育部博士点项目基金资助项目(20070286024).

作者简介: 潘金龙(1976-),男,教授,博导,从事高性能混凝土及工程应用、大体积混凝土结构裂缝控制和FRP复合材料在土木工程中应用等方面研究.E-mail:jinlongp@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

潘金龙,齐长雨,黄毅方,吴宏雷. 超长大体积混凝土地下结构温度效应的确定及仿真[J]. J4, 2011, 45(9): 1680-1687.

PAN Jin-long, QI Chang-yu, HUANG Yi-fang, WU Hong-lei. Determination and simulation of temperature effect
 on super-long and underground mass concrete structure. J4, 2011, 45(9): 1680-1687.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2011.09.027        http://www.zjujournals.com/xueshu/eng/CN/Y2011/V45/I9/1680

[1] 王铁梦. 工程结构裂缝控制[M].北京:中国建筑工业出版社,1997:1-16.
[2] 朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999:1-5.
[3] 叶甲淳,金伟良,邹道勤.混凝土小型空心砌块建筑温度场跟踪监测研究[J].建筑结构学报,2004,25(6):99-107.
YE Jiachun, JIN Weiliang, ZOU Daoqin. Research on site tracing monitoring of temperature field of concrete small hollow block building[J].Journal of Construction Structure,2004,25(6):99-107.
[4] 徐铨彪,余祖国,金伟良.基于温度效应的混凝土砌块建筑抗裂结构设计方法研究[J].建筑结构学报,2003,24(5):42-49.
XU Quanbiao, YU Zuguo, JIN Weiliang.Research on crackresisting construction design method of concrete small cavity block building based on temperature effect[J]. Journal of Construction Structure,2003,24(5):42-49.
[5] 南京航空学院,西北工业大学,北京航空学院.传热学[M].北京:国防工业出版社,1982:6-8.
[6] 邵红艳,竺润祥,任茶仙.结构温度场和温度应力场的有限元分析[J].宁波大学学报:理工版,2003,16(1):57-60.
SHAO Hongyan, ZHU Runxiang, REN Chaxian.Thermal structural analysis by FEM[J]. Journal of Ningbo University:Engineering Science,2003,16(1):57-60.
[7] 刘高琠.温度场的数值模拟[M].重庆:重庆大学出版社,1990:1-16.
[8] 雷宛,肖宏跃,邓一谦. 工程与环境物探教程[M].北京:地质出版社,2006:325-330.
[9] 刘国霖.变温带地温应力研究[J].三峡大学学报:自然科学版,2005,27(1):1-5.
LIU Guolin. Study of geothermal stress at solar warming layer\
[J\]. Journal of China Three Gorges University: Natural Sciences, 2005,27(1):1-5.
[10] 中华人民共和国水利部.水工混凝土结构设计规范(SLT19196)[M].北京:水利电力出版社,2001:101-105.

[1] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[2] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[3] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[4] 高航, 付有志, 王宣平, 彭灿. 螺旋面磨料流光整加工仿真与试验[J]. 浙江大学学报(工学版), 2016, 50(5): 920-926.
[5] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.
[6] 崔璟, 尹凌峰, 郭小明, 唐敢. 基于残余位移的空间结构火灾温度场推定方法[J]. 浙江大学学报(工学版), 2016, 50(4): 720-726.
[7] 刘海龙, 周家伟, 陈云敏, 李育超, 詹良通. 城市生活垃圾填埋场稳定化评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2336-2342.
[8] 宁峰平,姚建涛,孙锟,马明臻,赵永生. 多因素耦合对空间轴承热学特性的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 129-136.
[9] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[10] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[11] 谢阳,姚子澍,麻剑,罗麒元,许沧粟. 柴油温度对喷孔内流动特性影响的仿真分析[J]. 浙江大学学报(工学版), 2015, 49(5): 938-943.
[12] 欧祖敏,孙璐,程群群. 高速铁路无砟轨道温度场简化计算方法[J]. 浙江大学学报(工学版), 2015, 49(3): 482-487.
[13] 曹晓萌, 顾正华. 3种非淹没双体丁坝作用尺度划分准则及比较[J]. 浙江大学学报(工学版), 2015, 49(2): 200-207.
[14] 刘逸祥, 童根树, 张磊. 耐火钢圆钢管混凝土柱耐火极限和承载力[J]. 浙江大学学报(工学版), 2015, 49(2): 208-217.
[15] 胡友瑞,刘彦,汪洋,刘建忠,周俊虎,胡巍,李洪伟. 高湿氢氧喷注器数值分析与正交设计[J]. 浙江大学学报(工学版), 2015, 49(12): 2403-2409.