Please wait a minute...
J4  2010, Vol. 44 Issue (9): 1825-1830    DOI: 10.3785/j.issn.1008-973X.2010.09.031
交通运输、一般工业技术     
盾构任意衬砌变形边界条件下复变函数弹性解
童磊1,2,谢康和1,卢萌盟1,王坤1
1.浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;2.浙江省建筑设计研究院,浙江 杭州 310006
Elastic complex variables solution for general arbitrary ground
deformation of tunnels in clays
TONG Lei1,2, XIE Kang-he1, LU Meng-meng1, WANG Kun1
1.MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
2.Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310006, China
 全文: PDF 
摘要:

在Verruijt基本解法的基础上,假定Sagaseta通用变形模式为隧洞周边边界条件,推导了任意衬砌变形边界条件下复变函数弹性解答.利用复变函数解决孔口问题的基本方法,采用Mobius共形映射变换,将带孔口半无限空间映射为复平面下圆环域,该域下解析函数以Laurent级数展开,根据Muskhelishvili解法和给定边界条件,求得应力场和位移场.在此基础上分析了各分量对竖向位移和水平位移的影响,结果表明:衬砌椭圆化变形对位移场的影响远大于衬砌竖向沉降对位移场的影响.

关键词: 复变函数沉降水平位移任意衬砌变形弹性解    
Abstract:

Based on Verruijt method, an arbitrary ground deformation pattern founded by Sagaseta was assumed as the displacement boundary condition around the tunnel section. Using Mobius conformal mapping transformation, the elastic half plane with a hole was mapped conformally onto a ring on the complex plane. Then the analytic functions were expanded as Laurent series in this region. The stresses and displacements under given displacement were solved by the complex method founded by Muskhelishvili, and a solution for arbitrary deformations around a circular tunnel was deduced. By the case studies, the influences of distortion and vertical translation on surface settlement and horizontal displacement were investigated. The results indicate that liner distortion has greater effect on soil deformation than vertical translation.

Key words: complex variable    settlement    lateral displacement    arbitrary ground deformation    elastic solution
出版日期: 2010-10-10
:  U 451.2  
通讯作者: 谢康和,男,教授.     E-mail: zdkhxie@zju.edu.cn
作者简介: 童磊(1983-),男,浙江定海人,博士生,从事软土地基的地下工程研究.E-mail:zstonglei@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
童磊
谢康和
卢萌盟
王坤

引用本文:

童磊, 谢康和, 卢萌盟, 王坤. 盾构任意衬砌变形边界条件下复变函数弹性解[J]. J4, 2010, 44(9): 1825-1830.

TONG Lei, XIE Kang-He, LEI Meng-Meng, WANG Kun. Elastic complex variables solution for general arbitrary ground
deformation of tunnels in clays. J4, 2010, 44(9): 1825-1830.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2010.09.031        http://www.zjujournals.com/xueshu/eng/CN/Y2010/V44/I9/1825

[1] JEFFERY G B. Plane stress and plane strain in bipolar coordinates[C]∥Transactions of the Royal Society. London, England: [s.n.], 1920, 221:265293.
[2] MINDLIN, RAYMOND D. Stress distribution around a tunnel[J]. American Society of Civil Engineers, 1940, 105: 11171140.
[3] SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique, 1987, 37: 301320.
[4] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique, 1996, 46(4): 753756.
[5] LOGANATHAN N, POULOS H G. Analytical prediction for tunnelinginduced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846856.
[6] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 12581266.
[7] PARK K H. Elastic Solution for tunnelinginduced ground movements in clay[J]. International Journal of Geomechanics, 2004, 4(4): 310318.
[8]  童磊, 谢康和, 程永锋, 等. 考虑椭圆化地层变形影响的浅埋隧道弹性解[J]. 岩土力学, 2009, 30(2):393398.
TONG Lei, XIE Kanghe, CHENG Yongfeng, et al. Elastic solution of sallow tunnels in clays considering oval deformation of ground[J]. Rock and Soil Mechanics, 2009, 30(2):393398.
[9] VERRUIJT A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids Structures, 1998, 35(21): 27952804.
[10] 王立忠, 吕学金. 复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报, 2007, 29(3): 319327.
WANG Lizhong, LV Xuejin. A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 319327.
[11]  SAGASETA C. On the role of analytical solutions for the evaluation of soil deformation around tunnels [C]∥Application of Numerical Methods to Geotechnical Problems. \
[S.l.\]: CISM Courses and Lectures, 1998:397: 324.
[12] MUSKHELISHVILI N I, Mathematical theory of elasticity[M]. Leyden: International Publishing, 1954.
[13] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling. 1: Estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29: 929940.
[14] DEANE A P, BASSETT R H. The heathrow express trial tunnel[C]∥Proceedings of the Institution of Civil Engineers and Geotechnical Engineering. London, England: Thomas Telford Publishing, 1995, 113: 144156.

[1] 范海贵, 陈志平, 徐烽, 唐小雨, 苏文强. 基于实测沉降的浮顶储罐变形分析[J]. 浙江大学学报(工学版), 2017, 51(9): 1824-1833.
[2] 熊海贝,曹纪兴,张凤亮. 含加强层框筒结构位移监测方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1752-1760.
[3] 谭勇, 康志军, 卫彬, 邓刚. 上海软土地区某地铁风井深基坑案例分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1048-1055.
[4] 胡亚元, 杨秋华. YinGraham流变模型沉降简化计算统一公式[J]. 浙江大学学报(工学版), 2016, 50(6): 1009-1017.
[5] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[6] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[7] 孙强,张彦威,李谦,王智化,葛立超,周志军,岑可法. 褐煤快速热解半焦理化特性及气化活性[J]. 浙江大学学报(工学版), 2016, 50(11): 2045-2051.
[8] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(7): 1268-1275.
[9] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(4): 2-3.
[10] 周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 2015, 49(3): 531-537.
[11] 梁荣柱,潘金龙,林存刚,单华峰,孙廉威. 软土地区盾构施工沉降界限[J]. 浙江大学学报(工学版), 2014, 48(7): 1148-1154.
[12] 刘念武,龚晓南,楼春晖. 软土地区基坑开挖对周边设施的变形特性影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1141-1147.
[13] 胡安峰, 张光建, 贾玉帅, 张晓冬. 刚度衰减模型在大直径桩累积侧向位移分析中的应用[J]. J4, 2014, 48(4): 721-726.
[14] 王忠瑾,谢新宇,方鹏飞,李金柱,金伟良. 刚性长短组合桩的非线性沉降计算分析[J]. J4, 2014, 48(3): 463-470.
[15] 梁荣柱,潘金龙,林存刚,单华峰,孙廉威.  软土地区盾构施工沉降界限[J]. J4, 2014, 48(2): 0-00.