Please wait a minute...
J4  2010, Vol. 44 Issue (7): 1270-1275    DOI: 10.3785/j.issn.1008-973X.2010.07.007
自动化技术     
低延迟有限冲击响应滤波器约束最小二乘设计
赖晓平, 袁博, 徐东
杭州电子科技大学 信息与控制研究所,浙江 杭州 310018
Constrained least square design of finite impulse response filter with reduced group delay
LAI Xiaoping, YUAN Bo, XU Dong
Institute of Information and Control, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF 
摘要:

针对具有低群延迟的非线性相位有限冲击响应滤波器的设计问题,采用在极小化复数误差能量的同时对复数误差和相位误差进行约束的方法,既可以得到凸的约束区域,又可以对幅值误差和相位误差进行独立控制.将具有给定相位误差的低通滤波器的最小二乘设计方法扩展到高通和带通滤波器的设计,引入左边和双边S形相位误差上界约束函数对高通和带通滤波器的相位误差进行约束,来抑制带边附近群延迟误差大的效应.应用改进的GoldfarbIdnani算法求解由复数误差和相位误差约束最小二乘设计问题产生的半无穷正定二次规划.设计例子表明,该设计方法对减小滤波器的群延迟误差非常有效.

关键词: 有限冲击响应滤波器约束最小二乘设计群延迟误差相位误差    
Abstract:

The constrained least square design of nonlinearphase finite impulse response filter with reduced group delay was considered. By minimizing the complex error energy and imposing the constraints on the complex approximation error and the phase error, the convex feasible region can be obtained, and the magnitude error and the phase error can be independently controlled. The least square method for lowpass filter with given phase error was extended to the design of highpass and bandpass filters. The leftsided and doublesided sigmoid upperbound functions were introduced to constrain the phase error of highpass and bandpass filters in order to reduce the groupdelay error near the bandedges. An improved  GoldfarbIdnani algorithm was applied to solve the semiinfinite positivedefinite quadratic programming problem resulted from the constrained least square design. Design examples demonstrate that the method is effective to the reduction of groupdelay error of the designed filter.

Key words: finite impulse response filter    constrained least square design    group-delay error    phase error
出版日期: 2010-07-22
:     
基金资助:

国家自然科学基金资助项目(60974102);浙江省自然科学基金资助项目(Y1090109)

作者简介: 赖晓平(1965—),男,江西安远人,教授,博导,从事数字滤波器设计、优化方法、模式识别等研究. E-mail: laixp@hdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赖晓平
袁博
徐东

引用本文:

赖晓平, 袁博, 徐东. 低延迟有限冲击响应滤波器约束最小二乘设计[J]. J4, 2010, 44(7): 1270-1275.

LAI Xiao-Beng, YUAN Bo, XU Dong. Constrained least square design of finite impulse response filter with reduced group delay. J4, 2010, 44(7): 1270-1275.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2010.07.007        http://www.zjujournals.com/xueshu/eng/CN/Y2010/V44/I7/1270

[1] LAI X P. Optimal design of nonlinearphase FIR filters with prescribed phase error [J]. IEEE Transactions on Signal Processing, 2009, 57(9): 33993410.

[2] LIN Z P, LIU Y Z. Design of complex FIR filters with reduced group delay error using semidefinite programming [J]. IEEE Signal Processing Letters, 2006, 13(9): 529532.

 

[3] LIU Y Z, LIN Z P. Optimal design of frequencyresponse masking filters with reduced group delays [J]. IEEE Transactions on Circuits and Systems I, 2008, 55(6): 15601570.

[4] CHEN X, PARKS T W. Design of FIR filters in the complex domain [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(2): 144153.

[5] LANG M C. Constrained design of digital filters with arbitrary magnitude and phase responses [D]. Vienna: Vienna University of Technology, 1999.

[6] LEE W R, CACCETTA L, TEO K L, et al. Optimal design of complex FIR filters with arbitrary magnitude and group delay response [J]. IEEE Transactions on Signal Processing, 2006, 54(5): 16171628.

[7] 赵瑞杰,赖晓平.复FIR数字滤波器幅值约束Chebyshev设计[J].电子学报,2006,34(9): 16941699.

ZHAO Ruijie, LAI Xiaoping. Chebyshev design of complex FIR digital filters with magnitude constraints [J]. Acta Electronica Sinica, 2006, 34(9):16941699.

[8] SCHULIST M. FIR filter design with additional constraints using complex Chebyshev approximation [J]. Signal Processing, 1993, 33(1): 111119.

[9] KARAM L J, MCCLELLAN J H. Chebyshev digital FIR filter design [J]. Signal Processing, 1999, 76(1): 1736.

[10] PEI S C, SHYU J J. Design of arbitrary complex coefficient FIR digital filters by complex weighted leastsquares approximation [J]. IEEE Transactions on Circuits and Systems II, 1994, 41(12): 817820.

[11] BURNSIDE D, PARKS T W. Optimal design of FIR filters with the complex Chebyshev error criteria [J]. IEEE Transactions on Signal Processing, 1995, 43(3): 605616.

[12] POTCHINKOV A W, REEMTSEN R M. The design of FIR filters in the complex plane by convex optimization [J]. Signal Processing, 1995, 46(2): 127146.

[13] LIN Z P, LIU Y Z. Design of arbitrary complex coefficient WLS FIR filters with group delay constraints [J]. IEEE Transactions on Signal Processing, 2009, 57(8): 32743279.

[1] 张少蔚, 徐东, 袁博, 赖晓平. 复数FIR滤波器椭圆误差约束最小二乘设计[J]. J4, 2010, 44(7): 1338-1342.