Please wait a minute...
J4  2010, Vol. 44 Issue (3): 595-600    DOI: 10.3785/j.issn.1008-973X.2010.03.032
机械工程     
三叶形等距型面联接的特性分析
黄滨, 李杰, 孙青军, 王乐勤
浙江大学 化工机械研究所,浙江 杭州 310027
Performance analysis of trilobe equidistant polygon connection
HUANG Bin, LI Jie, SUN Qingjun, WANG Leqin
Institute of Chemical Machinery, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

为分析三叶形等距型面联接的特性, 给出一套准确的有限元分析方法.通过立方样条曲线拟合廓形曲线,建立了1/3周期对称的平面有限元模型;在径向边界施加周期性约束,在轮毂内表面施加了均匀切向力载荷以等效转矩,在轮毂物外表面施加了周向固定约束.通过算例,得到三叶形等距型面联接的应力分布特点:接触应力近似呈三角形分布,接触角度范围约占整个空间的1/3.摩擦力虽然在转矩传递过程中起着重要作用,但其的影响不会改变接触应力的分布范围和规律.摩擦系数的增大导致法向接触压力减小,进而提高了型面联接的承载能力.偏心率的增大导致接触面积和法向接触力的减小和力臂的增加,但摩擦力在传递转矩中所占比重也相应减少.三叶形等距型面联接工作过程中,轮毂内表面脱离接触区域,有较大的拉应力,在轮毂和轮轴的接触区则存在着较大的压应力

关键词:  型面联接三叶形有限元分析接触应力    
Abstract:

An accurate finite element method was set up for analysis of characteristics of trilobe equidistant polygon connection. In this method, the profile curves were fit through cubic spline curves, and a 2D FEM model with a one third triaxial symmetry was adopted. Besides, periodic constraints were exerted on the radial boundaries, and uniform tangential force was applied on the inner surface of wheel hub to simulate the torque, while the outer surface of the hub was fixed in the circumferential direction. Through a calculation example of the trilobe equidistant connection, the stress distribution characteristics were derived as follow: the contact stress shows an approximate triangular distribution while the contact angle scope spreads about one third of the entire domain. Friction, which plays an important role in the torque transmission process, does not change the distribution and rule of the contact stress. As the friction coefficient increases, the normal contact stress decreases prominently, thereby increases the capacity of profile connection. With the increase of the eccentricity, the contact area and the arm of normal contact force increases, while the normal contact force keeps falling despite that the proportion of friction taking up in the transmission torque shrinks correspondingly. In the process of the trilobe equidistant polygon connection, the separating zone of hub inner surface shows large tensile stress, while the contacting zone of the hub and the shaft endures large compressive stress.

Key words: polygon connection    trilobe    finite element(FE) analysis    contact stress
出版日期: 2010-04-01
:     
基金资助:

浙江省科技厅重点资助项目(2007C21059)

通讯作者: 王乐勤,男,教授,博导.     E-mail: hj_wlq2@zju.edu.cn
作者简介: 黄滨(1985—),男,福建古田人,博士生,从事流体机械及滑动推力轴承分析与优化设计.Email: huangbin486@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄滨
李杰
孙青军
王乐勤

引用本文:

黄滨, 李杰, 孙青军, 王乐勤. 三叶形等距型面联接的特性分析[J]. J4, 2010, 44(3): 595-600.

HUANG Bin, LI Jie, SUN Jing-Jun, WANG Le-Qi. Performance analysis of trilobe equidistant polygon connection. J4, 2010, 44(3): 595-600.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2010.03.032        http://www.zjujournals.com/xueshu/eng/CN/Y2010/V44/I3/595

[1] 邬义杰. 多面形非圆曲面成型原理及数控加工技术研究[D]. 杭州:浙江大学,1999.
WU Yijie. Designing method and numerical control machining principle for arbitrary npolygon noncircular section [D]. Hangzhou: Zhejiang University, 1999.
[2] WANG D S, ZHOU A P, YUAN Y L Study of a CNC grinding machining method using an isometric polygon profile [J]. Journal of Materials Processing Technology, 2002, 129: 237240.
[3] 王德胜,武良臣.三弧段等距型面的几何要素及其加工[J]. 机械工艺师, 1993(6):1214.
WANG Desheng, WU Liangchen. Geometric characteristic and manufacture of 3arc equidistant connection[J]. Mechanical Technologist,1993 (6): 1214.
[4] 赵清敏.等轴廓线型面联接及其应用[J].上海机床,1999(10): 4751.
ZHAO Qingming. Application of equidistant profile connection.[J]. Maching Tool of Shanghai,1999(10):  4751.
[5] CITARELLA R, GERBINO S. BE analysis of shafthub couplings with polygonal profiles [J]. Journal of Materials Processing Technology , 2001,109: 3037.
[6] CZYZEWSKI T, ODMAN M T, Analysis of contact stress and deformation in a trilobe polygonal connection [J]. Transactions of the ASME, Journal of Engineering for Industry , 1988, 110: 212217.
[7] 王梦熊,杨永治.轴与轮毂用花键与型面联接的分析[J].机械制造.1991(1): 1418.
WANG Mengxiong, Yang Yongzhi. Analysis of spline and polygonal connection between shaft and hub [J]. Machine Manufacture, 1991(1): 1418.
[8] FESSLER H., MOORE C J.Stresses in a splineless drive for aeroengines [C]// Proceedings of Industry Mechanical Engineers, PartG: Journal of Aerospace Engineering, Nottingham, United Kingdom: University of Nottingham,1996: 189202.
[9] KAHNJETTER Zella L,  EUGENE Hundertmark, SUZANNE Wright. Comparison of torque transmitting shaft connectivity using a trilobe polygon connection and an involute spline [J]. Journal of Mechanical Design, 2000, 122(1): 130135.
[10] BEITZ W, REINHOLZ R.三叶多边形轴——轮毂联接的承载能力[J].工程设计,1994(1): 3439
BEITZ W, REINHOLZ R. Capacity of trilobe polygon connection between shaft and hub[J]. Journal of Engineering Design,1994 (1): 3439.
[11] RYFFEL D. A better way to make shaft connections[J]. Machine Design,1988,60(18): 124127.
[12] 徐灏.机械设计手册[M].2版.北京:中国机械出版社,2004.
[13] 胡志刚,王德胜.应用光弹实验研究等距型面联接接触应力分布[J]. 机械设计,2001(3): 3942.
HU Zhigang, WANG Desheng. Study on the distribution of contact stress on isomeric profile conection by applying photoelastic experiment\
[J\]. Journal of Machine Design,2001(3): 3942.
[14] 郑友益,冯朝阳.等距型面联接强度的光弹性试验研究[J].矿山机械,1997(5): 4042.
ZHENG Youyi, FENG Chaoyang. Photoelastic experiment research of isometric profile connection intensity[J]. Mine Machinery, 1997 (5): 4042.

[1] 王幸, 徐武, 张晓晶, 张丽娜, 胡本润. TC4板冷挤压强化寿命预测与试验验证[J]. 浙江大学学报(工学版), 2017, 51(8): 1610-1618.
[2] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[3] 江南, 陈民铀, 徐盛友, 赖伟, 高兵. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报(工学版), 2017, 51(4): 825-833.
[4] 陈伟刚,邓华, 白光波, 董石麟, 朱忠义. 平板型铝合金格栅结构支座节点的承载性能[J]. 浙江大学学报(工学版), 2016, 50(5): 831-840.
[5] 毕运波,李夏,严伟苗,沈立恒, 朱宇,方伟. 面向螺旋铣制孔过程的压脚压紧力优化[J]. 浙江大学学报(工学版), 2016, 50(1): 102-110.
[6] 王佼姣, 石永久, 王元清, 潘鹏, 牧野俊雄, 齐雪. 低屈服点钢材LYP100循环加载试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1401-1409.
[7] 狄生奎, 文铖, 叶肖伟. 正交异性钢桥面板结构热点应力有限元分析[J]. 浙江大学学报(工学版), 2015, 49(2): 225-231.
[8] 黄奇伟, 章明, 曲巍崴, 卢贤刚, 柯映林. 机器人制孔姿态优化与光顺[J]. 浙江大学学报(工学版), 2015, 49(12): 2261-2268.
[9] 陈威, 朱伟东, 章明, 赵健冬, 梅标. 叠层结构机器人制孔压紧力预测[J]. 浙江大学学报(工学版), 2015, 49(12): 2282-2289.
[10] 储火, 陶伟明. 纤维增强复合材料冲击失效的二元模型分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1502-1507.
[11] 孙晓燕, 姚晨纯, 王海龙, 张治成. 基于3D有限元的FRP筋夹片式锚具参数影响分析[J]. 浙江大学学报(工学版), 2014, 48(6): 1058-1067.
[12] 范双双, 杨灿军, 彭时林, 黎开虎, 谢钰, 张绍勇. 水下滑翔机关键承压系统设计与试验研究[J]. J4, 2014, 48(4): 633-640.
[13] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[14] 刘刚,刘春,章明,柯臻铮,柯映林,李文清,赵学安. 基于磁场磁力的铁粉纸屑分离机构设计  [J]. J4, 2013, 47(7): 1267-1274.
[15] 林超, 陶友淘, 程凯, 俞松松, 刘垒. 微/纳传动平台的位移耦合分析[J]. J4, 2013, 47(4): 720-727.