Please wait a minute...
J4  2010, Vol. 44 Issue (3): 482-488    DOI: 10.3785/j.issn.1008973X.2010.03.013
能源工程与动力工程     
不同带粉量的三次风再燃试验与数值模拟
 斯东波, 周昊, 岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Experimental study and numerical simulation on tertiary air reburning with different micronized coal content
SI Dongbo, ZHOU Hao, CEN Kefa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要:

在某200 MW四角切圆燃烧煤粉炉上实施了三次风再燃技术,并采用现场试验和数值模拟相结合的方法,研究不同三次风带粉量工况下的炉内煤粉燃烧和NOx还原情况.研究结果表明,引入高速燃尽风喷口(OFA)射流可以强化混合,加快焦炭颗粒的燃尽,同时通过合理控制OFA喷口高度来避免炉膛上部超温;为降低飞灰含碳量,要尽量提高主燃区内煤粉的燃尽程度;若适当提高OFA喷口高度并合理控制炉内各区域的过量空气系数,在20%带粉量情况下,该三次风再燃方案可以获得50%以上的脱硝率并基本不影响锅炉正常运行.

关键词:  三次风再燃三次风带粉量脱硝率数值模拟飞灰含碳量    
Abstract:

 Tertiary air reburning technology was applied to a 200 MW tangentially coalfired boiler, with using the micronized coal contained in the tertiary air as reburning fuel. In different conditions of the micronized coal content in the tertiary air, the coal combustion and NOx reduction were investigated by means of both field tests and numerical simulation. The results show that the highvelocity over fire air (OFA) injections can improve the mixing, and therefore make the char particles burn out quickly. Also the OFA nozzles should be located properly so as to avoid temperature increase in the upper furnace. In order to reduce the carbon content in fly ash, the coal burnout ratio in primary zone should be improved to a high level. The results also indicate that NOx reduction rate of more than 50% can be obtained without adverse impact on boiler performance with satisfying the following conditions: the OFA nozzles are shifted upward in a proper range, each zone in the furnace is operated at reasonable stoichiometry, and the micronized coal content in the tertiary air is increased to 20%.

Key words:  tertiary air reburning    micronized coal content in the tertiary air    NOx reduction rate    numerical simulation    carbon volume fraction of fly ash
出版日期: 2010-04-01
:  TK224  
基金资助:

 国家自然科学基金资助项目 (60534030);浙江省自然科学基金资助项目 (R107532);新世纪优秀人才支持计划资助项目(NCET-07-0761);全国优秀博士学位论文作者专项资金资助项目 (200747).

作者简介: 斯东波(1980—),男,浙江东阳人,博士生,从事超细煤粉燃烧技术研究. Email: sidongbo_1980@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
斯东波
周昊
岑可法

引用本文:

斯东波, 周昊, 岑可法. 不同带粉量的三次风再燃试验与数值模拟[J]. J4, 2010, 44(3): 482-488.

SHI Dong-Bei, ZHOU Hao, CEN Ge-Fa. Experimental study and numerical simulation on tertiary air reburning with different micronized coal content. J4, 2010, 44(3): 482-488.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008973X.2010.03.013        http://www.zjujournals.com/xueshu/eng/CN/Y2010/V44/I3/482

1] SMOOT L D, HILL S C, XU H. NOx control through reburning[J].Progress in Energy and Combustion Science,1998, 24(5): 385408.
[2] LI Sen, XU Tongmo, ZHOU Qulan, et al. Optimization of coal reburnning in a 1MW tangentially fired furnace[J]. Fuel, 2007, 86(78): 11691175.
[3] MALY P M, ZAMANSKY V M, HO L, et al.Alternative fuel reburning[J].Fuel, 1999, 78(3): 327334.
[4] 周昊,邱坤赞,王智化,等.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响[J].燃料化学学报,2004, 32(2): 146150.
ZHOU Hao, QIU Kunzan, WANG Zhihua, et al. Study of coal rank and fineness on NOx reduction with coal reburning technology[J]. Journal of Fuel Chemistry and Technology, 2004, 32(2): 146150.
[5] JAMAL B M. Micronized coal reburn demonstration project for NOx control at the New York State Electric & Gas tangentiallyfired Milliken Unit 1[R].USA, CONSOL Inc. Research & Development, 1999.
[6] 池作和,李剑,应明良,等.利用超细煤粉再燃降低煤粉炉NOx排放技术报告[R].杭州:浙江大学,2006.
CHI Zuohe, LI Jian, YING Mingliang, et al. Technical report on applying micronized coal reburning technology to reduce NOx emissions of a pulverizedcoal fired boiler [R]. Hangzhou: Zhejiang University, 2006.
[7] 潘维,池作和,斯东波,等.200MW四角切圆燃烧锅炉改造工况数值模拟[J].中国电机工程学报,2005,25(8): 110115.
PAN Wei, CHI Zuohe, SI Dongbo, et al. Numerical simulation of combustion process in a 200 MW tangentially fired furnace to study furnace reconstruction[J]. Proceedings of the CSEE, 2005, 25(8): 110115.
[8] SMOOT L D, SMITH P J. Coal combustion and gasification [M]. New York, USA: Plenum Press, 1985.
[9] HILL S C, SMOOT L D. Modeling of nitrogen oxides formation and destruction in combustion systems [J]. Progress in Energy and Combustion Science, 2000, 26(46): 417458.
[10] 岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004.
[11] JAVIER P, INMACULADA A, ALAN W. Integration of CFD codes and advanced combustion models for quantitative burnout determination[J]. Fuel, 2007, 86(15): 22832290.
[12] HURT R, SUN JK, LUNDEN M. A kinetic model of carbon burnout in pulverized coal combustion[J]. Combustion and Flame, 1998, 113(12): 181197.
[13] ANTONIO M, DAVID M, STEVEN H P. Demonstration project for the abatement of nitrogen oxides emissions using reburn technology for cogeneration plants in Taiwan[R]. USA: GE Energy and Environmental Research Corporation, 2003.
[14] LIU H, HAMPARTSOUMIAN E, GIBBS B M. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning[J].Fuel, 1997, 76(11): 985993.
[15] 刘忠,阎维平,高正阳.停留时间对微细煤粉再燃还原NO效率的影响[J].燃烧科学与技术,2004,10(4): 354358.
LIU Zhong, YAN Weiping, GAO Zhengyang. Effect of the residence time on achieving NO reduction with pulverized coal reburning[J].Journal of Combustion Science and Technology, 2004, 10(4): 354358.

[1] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[2] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[3] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[4] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.
[5] 高航, 付有志, 王宣平, 彭灿. 螺旋面磨料流光整加工仿真与试验[J]. 浙江大学学报(工学版), 2016, 50(5): 920-926.
[6] 刘海龙, 周家伟, 陈云敏, 李育超, 詹良通. 城市生活垃圾填埋场稳定化评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2336-2342.
[7] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[8] 张井志, 李蔚. 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报(工学版), 2015, 49(8): 1572-1576.
[9] 谢阳,姚子澍,麻剑,罗麒元,许沧粟. 柴油温度对喷孔内流动特性影响的仿真分析[J]. 浙江大学学报(工学版), 2015, 49(5): 938-943.
[10] 曹晓萌, 顾正华. 3种非淹没双体丁坝作用尺度划分准则及比较[J]. 浙江大学学报(工学版), 2015, 49(2): 200-207.
[11] 胡友瑞,刘彦,汪洋,刘建忠,周俊虎,胡巍,李洪伟. 高湿氢氧喷注器数值分析与正交设计[J]. 浙江大学学报(工学版), 2015, 49(12): 2403-2409.
[12] 董永申, 王定标, 向飒, 夏春杰. 倾斜螺旋片强化的套管换热器数值模拟[J]. 浙江大学学报(工学版), 2014, 48(9): 1-6.
[13] 赵飞, 杨帅, 吴俊, 吴淳杰, 吴大转. 基于Fluent的压力能交换器端面液膜支撑机理分析[J]. 浙江大学学报(工学版), 2014, 48(8): 1528-1533.
[14] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[15] 许忠源,徐长节,陈冉,蔡袁强. 涌潮冲击排桩式丁坝的三维数值模拟[J]. J4, 2014, 48(3): 504-513.