Please wait a minute...
J4  2010, Vol. 44 Issue (1): 23-28    DOI: 10.3785/j.issn.1008-973X.2010.01.005
机械工程     
基于轴向自适应的曲线插补算法
沈洪垚,傅建中,陈子辰
(浙江大学 现代制造工程研究所,浙江省先进制造技术重点研究实验室,浙江 杭州 310027)
Axial self-adaptability based curve interpolation algorithm
SHEN Hong-yao, FU Jian-zhong, CHEN Zi-chen
(Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Institute of Manufacturing Engineering,
Zhejiang University, Hangzhou 310027, China)
 全文: PDF 
摘要:

高速加工中各运动轴上的动力学状态将直接影响机床运行的平稳性和工件尺寸精度,而传统的自由曲线插补算法没有很好地考虑插补运动在各轴上的影响.为此提出一种新的非均匀有理B样条(NURBS)曲线插补算法(ALANI).该算法在保证插补轮廓精度的基础上,将各轴上的加速度分量严格控制在相应轴伺服系统加速能力范围内,同时控制加加速度分量,以保证在加工中的任意时刻不会出现过大冲击和振动.通过运动学定性分析,设计一种稳定的插补策略修正算法,对曲线状况进行前瞻计算,在发现危险点后灵活、高效地追溯原数据,并对速度曲线进行修正.与同类算法的仿真对比实验表明,该算法能够获得更好的加工特性.

关键词: NURBS轴分量加加速限制加速    
Abstract:

The dynamic influence on each axis will significantly influence the machining stability and product precision while high speed machining (HSM) is significant but always be ignored in most interpolators. The proposed axis-based look-ahead NURBS interpolator (ALANI) not only guarantees the contour precision of workpiece, but also confines the component acceleration according to the capability of the servo system on each axis, restricting the component jerk to avoid immoderate vibration and shocks. Based on the kinematics analysis, an algorithm of interpolation strategy modification was designed, which can efficiently modify the feedrate while encountering a bad point during the look-ahead calculation. The simulation shows that the ALANI algorithm has better characteristic compared to other interpolators.

Key words: NURBS    axis component    jerk-limited acceleration
出版日期: 2010-02-04
:  TP 391  
基金资助:

国家自然科学基金资助项目(50675199).

通讯作者: 傅建中,男,教授.     E-mail: fjz@zju.edu.cn
作者简介: 沈洪垚(1981-),男,浙江桐乡人,博士生,从事数控技术和嵌入式技术研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈洪垚
傅建中
陈子辰

引用本文:

沈洪垚, 傅建中, 陈子辰. 基于轴向自适应的曲线插补算法[J]. J4, 2010, 44(1): 23-28.

CHEN Hong-Yao, FU Jian-Zhong, CHEN Zi-Chen. Axial self-adaptability based curve interpolation algorithm. J4, 2010, 44(1): 23-28.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2010.01.005        http://www.zjujournals.com/xueshu/eng/CN/Y2010/V44/I1/23

[1] HUANG J, YANG D. A generalized interpolator for command generation of parametric curves in computer controlled machines [C]∥ ASME Japan/USA Symposium on Flexible Automation. San Francisco: ASME, 1992: 286-292.
[2] SHPITALNI M, KOREN Y, LO C C. Realtime curve interpolators [J]. Computer-Aided Design, 1994, 26(11): 832-838.
[3] YANG D, KONG T. Parametric interpolator versus linear interpolator for precision CNC machining [J]. Computer-Aided Design, 1994, 26(3): 225-233.
[4] YEH S, HSU P. The speed-controlled interpolator for machining parametric curves [J]. Computer-Aided Design, 1999, 31(1): 349-357.
[5] YEH S, HSU P. Adaptive-feedrate interpolation for parametric curves with a confined chord error [J]. Computer-Aided Design, 2002, 34(2): 229-237.
[6] YONG T, NARAYANASWAMI R. A parametric interpolator with confined chord errors, acceleration and deceleration for NC machining [J]. Computer-Aided Design, 2003, 35(7): 1249-1259.
[7] JI J, ZHOU L, ZHANG D. Motion smoothing implementation for NURBS curve interpolation [J]. China Mechanical Engineering, 2006, 17(21): 2225-2232.
[8] ERKORKMAZ K, ALTINTAS Y. High speed CNC system design. Part I: Jerk limited trajectory generation and quintic spline interpolation [J]. International Journal of Machine Tools and Manufacture, 2001, 41(1): 1323-1345.
[9] NAM S H, YANG M Y. A study on a generalized parametric interpolator with real-time jerk-limited acceleration [J]. Computer-Aided Design, 2004, 36(4): 27-36.
[10] LIN M T, TSAI M S, YAU H T. Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm [J]. International Journal of Machine Tools and Manufacture, 2007, 47(5): 2246-2262.
[11] LIU X, AHMAD F, YAMAZAKI K. Adaptive interpolation scheme for NURBS curves with the integration of machining dynamics [J]. International Journal of Machine Tools and Manufacture, 2005, 45(3): 433-444.
[12] PENG F Y, HE Y, LI B. Look-ahead control in high feed rate NURBS curve interpolation [J]. Journal of Computer-Aided Design and Computer Graphics, 2006, 18(5): 625-629.
[13] 任锟,傅建中,陈子辰. 高速加工中速度前瞻控制新算法研究[J]. 浙江大学学报:工学版, 2006, 40(11): 1985-1988.
REN Kun, FU Jian-zhong, CHEN Zi-chen. New look-ahead algorithm for velocity control in high speed machining [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(11): 1985-1988.
[14] PIEGL L, TILLER W. The NURBS book [M]. 2nd ed. Berlin: Springer, 1997: 116-118.

[1] 陈健, 王进, 陆国栋. 电极损耗分层预变形补偿方法[J]. 浙江大学学报(工学版), 2017, 51(3): 436-444.
[2] 赖金涛, 傅建中, 沈洪垚, 甘文峰. 基于NURBS曲面敏感点的曲面检测测点优化[J]. 浙江大学学报(工学版), 2015, 49(7): 1201-1207.
[3] 金育安, 贺永, 傅建中. NURBS及Hermite混合高速加工插补算法[J]. J4, 2014, 48(4): 641-648.
[4] 王益, 赖金涛, 傅建中, 沈洪垚. 基于NURBS控制点重构的加工误差在机测量方法[J]. 浙江大学学报(工学版), 2014, 48(10): 1781-1787.
[5] 金正哲, 邬义杰, 张雷, 刘孝亮. 基于模糊推理的NURBS
曲线直接插补进给速度确定方法
[J]. J4, 2012, 46(6): 1048-1053.
[6] 刘岩 陈建良 童水光 徐立. 采用三次NURBS曲面构造鞋楦模型及刻楦仿真[J]. J4, 2008, 42(5): 875-879.
[7] 成敏 王国瑾. NURBS曲面显式降多阶逼近[J]. J4, 2007, 41(6): 945-949.