Please wait a minute...
J4  2009, Vol. 43 Issue (11): 2120-2124    DOI: 10.3785/j.issn.1008-973X.2009.11.032
土木与水利工程     
海港码头混凝土表面氯离子质量分数随季节变化规律
赵羽习,高祥杰,许晨,金伟良
(浙江大学 土木工程学系,浙江 杭州 310029)
Concrete surface chloride ion concentration varying with seasons in marine environment
ZHAO Yu-xi, GAO Xiang-jie, XU Chen, JIN Wei-liang
(Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(823 KB)  
摘要:

分别在一年内的4个季节对某使用多年的海港码头同一区域结构进行现场取样,采用氯化物快速测定法分析混凝土表面和内部氯离子质量分数,并应用Fick第二定理,回归得到混凝土名义表面氯离子质量分数.据此得出海港码头混凝土表面氯离子质量分数随季节变化的规律:表面氯离子质量分数随季节变化曲线呈明显的单峰高斯分布,夏季达到峰值,而冬季最低.通过统一的数据建立基于单峰高斯方程的海港码头混凝土表面氯离子质量分数的季节影响系数经验表达式.用温度作为主要影响指标来描述海港码头混凝土表面氯离子质量分数随季节变化的规律是可行的.

关键词: 混凝土表面氯离子质量分数季节高斯方程    
Abstract:

Concrete power collected in-situ from a 5-year-old concrete dock in four seasons respectively was tested by rapid chloride test (RCT) to analyze the chloride ion concentration in surface and inner concrete. By Ficks second law, the nominal chloride ion concentration in concrete surface was derived based on the inspected data. Accordingly, the law of the concrete surface chloride ion concentration varying with seasons in marine environment was concluded: the levels of surface chloride ion concentration of spring and autumn are similar and higher than that of winter; while the peak of surface chloride ion concentration appears during summer due to higher temperature, faster wind speed and longer daily immersing (wetting) time in seawater. The law can be described with temperature as main impact indicator. According to the unitary data, an empirical equation was proposed to describe the influence of seasons on surface chloride ion concentration based on a single-peak Gaussian function.

Key words: concrete    surface chloride ion concentration    seasons    Gaussian function
出版日期: 2009-12-01
:  U 657.3  
基金资助:

国家自然科学基金重点资助项目(50538070);国家自然科学基金资助项目(50808157);浙江省重大科技专项资助项目(2006C13090);交通部西部交通建设科技项目(200631822302-06);国家科技支撑计划课题(2006BAJ03A03-03).

作者简介: 赵羽习(1973-),女,浙江杭州人,教授,从事结构工程研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵羽习
高祥杰
许晨

引用本文:

赵羽习, 高祥杰, 许晨, 等. 海港码头混凝土表面氯离子质量分数随季节变化规律[J]. J4, 2009, 43(11): 2120-2124.

DIAO Hu-Xi, GAO Xiang-Jie, HU Chen, et al. Concrete surface chloride ion concentration varying with seasons in marine environment. J4, 2009, 43(11): 2120-2124.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.11.032        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I11/2120

[1] 金伟良,赵羽习. 混凝土结构耐久性[M]. 北京:科学出版社, 2002: 42-48.
[2] 杭州湾大桥工程指挥部. 杭州湾跨海大桥土建工程施工:招标文件参考资料[R]. 2004.
Hangzhou Bay Bridge Project Headquarters. Hangzhou Bay Bridge civil engineering construction: tender document reference [R]. 2004.
[3] 余红发,孙伟,鄢良慧,等. 混凝土使用寿命预测方法的研究I:理论模型[J]. 硅酸盐学报, 2002, 30(6): 686-691.
YU Hong-fa, SUN Wei, YAN Liang-hui, et al. Concrete service life prediction methods I : theoretical model [J]. Portland Journal, 2002, 30(6): 686-691.
[4] 施养杭,罗刚. 含多种因素的氯离子侵入混凝土的有限差分计算模型[J]. 工业建筑, 2004, 34(5): 7-11.
SHI Yang-hang, LUO Gang-han. A finite difference calculating model of chloride penetrating into concrete under various factors [J]. Industrial Building, 2004, 34(5): 7-11.
[5] 詹炳根,孙伟,沙建芳,等. 碱硅酸反应作用下混凝土中氯离子扩散规律和结合能力[J]. 硅酸盐学报, 2006, 36(6): 956-962.
ZHAN Bing-gen, SUN Wei, SHA Jian-fang, et al.Chloride diffusion and binding capacity in concrete suffered from ASR [J]. Portland Journal, 2006, 36(6): 956-962.
[6] GB/T 50476-2008,混凝土结构耐久性设计规范[S]. 北京:中国建筑工业出版社,2008: 22.
[7] 吴相豪. 预估海港工程混凝土氯离子浓度分布新方法[J]. 水利水运工程学报, 2006(1): 35-39.
WU Xiang-hao. New prediction method for distribution of chloride concentration in concrete of marine works[J]. Hydro-Science and Engineering, 2006(1): 35-39.
[8] 刘荣桂,陈妤,颜庭成. 氯盐环境条件下预应力混凝土氯离子侵蚀模型研究[J]. 混凝土, 2006(9): 1-4.
LIU Rong-gui, CHEN Yu, YAN Ting-cheng. Research to chloride ion erosion model for prestressed concrete in chloride environment [J]. Concrete, 2006(9): 1-4.
[9] 范宏,赵铁军,田砾. 氯离子标准扩散计算模型用于寿命预测分析[J]. 青岛理工大学学报, 2006, 27(2): 18-24.
FAN Hong, ZHAO Tie-jun, TIAN Li. The analysis of the standard diffusion calculating model of chloride ions used in life prediction [J]. Qingdao University of Science and Technology, 2006, 27(2): 18-24.
[10] XI Yun-ping, BAZANT Z P. Modeling chloride penetration in saturated concrete [J]. Journal of Material in Civil Engineering, 1999, 11(1): 58-65.
[11] TAMIMI A K, ABDALLA J A, SAKKA Z I. Prediction of long term chloride diffusion of concrete in harsh environment [J]. Construction and Building Materials, 2008, 22(5): 829-836.
[12] 范宏,赵铁军,徐红波. 码头混凝土中的氯离子侵入研究 [J]. 水运工程, 2006(4): 49-54.
FAN Hong, ZHAO Tie-jun, XU Hong-bo. Chloride ingress in concrete of port structures [J]. Port and Waterway Engineering, 2006(4): 49-54.
[13] ANN K Y, ANN J H, RYOU J S. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures [J]. Construction and Building Materials, 2009, 23(1): 239-245.
[14] 李佩珍,谢慧才. RCT:快速氯离子检测方法及其应用[J]. 混凝土, 2000(12): 46-48.
LI Pei-zhen, XIE Hui-cai. RCT: rapid chloride ion detection method and its application [J]. Concrete, 2000(12): 46-48.
[15] 姚昌建. 沿海码头混凝土设施受氯离子侵蚀的规律研究[D]. 杭州:浙江大学, 2007.
YAO Chang-jian. Penetration laws of chloride ions in concrete infra structures at coast [D]. Hangzhou: Zhejiang University, 2007.

[1] 戴理朝, 王磊, 张建仁, 羊日华. 钢绞线锈蚀产物填充及裂缝宽度预测[J]. 浙江大学学报(工学版), 2018, 52(1): 97-105.
[2] 蔡自伟, 陆洲导, 李凌志, 苏磊, 林闯. 梁侧锚固钢板加固混凝土梁受剪性能试验[J]. 浙江大学学报(工学版), 2018, 52(1): 82-88.
[3] 李奔奔, 江佳斐, 豆香香, 肖平成. 新型被动式真三轴试验装置[J]. 浙江大学学报(工学版), 2017, 51(9): 1688-1694.
[4] 余翔, 孔宪京, 邹德高. 混凝土防渗墙变形与应力分布特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1704-1711.
[5] 蒋翔, 童根树, 张磊. 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报(工学版), 2017, 51(8): 1482-1493.
[6] 万晨光, 申爱琴, 郭寅川. 桥面铺装调平层与沥青面层层间剪切行为[J]. 浙江大学学报(工学版), 2017, 51(7): 1355-1360.
[7] 徐铨彪, 陈刚, 贺景峰, 龚顺风, 肖志斌. 复合配筋混凝土预制方桩接头抗弯性能试验[J]. 浙江大学学报(工学版), 2017, 51(7): 1300-1308.
[8] 欧祖敏, 孙璐. 冻融损伤混凝土的弯曲疲劳寿命可靠性分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1074-1081.
[9] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[10] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[11] 李静, 王哲. 似平面应力条件下混凝土的变形特性[J]. 浙江大学学报(工学版), 2017, 51(4): 745-751.
[12] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[13] 董运宏, 淳庆, 许先宝, 王建国, 黄珊. 民国建筑锈胀开裂时的临界锈蚀深度[J]. 浙江大学学报(工学版), 2017, 51(1): 27-37.
[14] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[15] 王震,王景全,戚家南. 钢管混凝土组合桥墩变形能力计算模型[J]. 浙江大学学报(工学版), 2016, 50(5): 864-870.