Please wait a minute...
J4  2009, Vol. 43 Issue (11): 2048-2053    DOI: 10.3785/j.issn.1008-973X.2009.11.019
力学     
土-作物-大气系统中动态根系生长及水动力学模拟
杨德军1,2,张土乔1,ZHANG Ke-feng2, GREENWOOD Duncan J2,郭帅1
(1.浙江大学 建筑工程学院,浙江 杭州 310058; 2.华威大学 国际园艺研究中心,英国 沃里克 CV35 9EF)
Simulation of dynamic root growth and water transfer in soil-crop-atmosphere system
YANG De-jun1,2, ZHANG Tu-qiao1, ZHANG Ke-feng2,GREENWOOD Duncan J2, GUO Shuai1
(1.School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Warwick Horticulture Research International, The University of Warwick, Warwick CV35 9EF, UK)
 全文: PDF(933 KB)  
摘要:

针对土-作物-大气连续系统的土壤水动力学模型对根系动态生长的模拟不理想,通过引入最新的根系生长模型理论、根长密度分布函数以及联合国粮农组织推荐的计算蒸发及蒸腾总量的模型理论,与现有的模拟水土运动的有限元程序相耦合,建立模拟土-作物-大气系统的水动力学模型.基于荷兰实验农场的小麦实验数据的模拟结果表明,在不同时期、不同深度处土壤中水的体积分数与实验值比较吻合;由于降雨和蒸发的上边界影响,上部土壤中水的体积分数随时间变化较快;除接近地表的个别根长密度模拟点偏差较大外,总体来说根长及根长密度模拟结果与实验值比较吻合;蒸腾量和蒸发量的模拟结果可靠.建立的新模型合理,可以有效地模拟土-作物-大气系统中的根系生长及水动力学.

关键词: 水动力学土-作物-大气系统根长密度分布有限元方法    
Abstract:

In allusion to the case that the current soil hydrodynamic models of soil-plant-atmosphere continuum system cannot give a good prediction for rooting depth and root length density distribution, a new model for water transfer throughout growth was developed, which employing a recently proposed algorithm for simulating the dynamic root growth and the approach introduced by Food and Agriculture Organization of the United Nations for estimating the soil evaporation and plant transpiration. The soil water movement was described by a flow equation which was solved by a finite element numerical scheme. The validation of the developed model was carried out against data from a field experiment on a soil cropped with wheat in Netherlands. Results showed that the simulation results agreed with the measurement data of soil water content down the profile at intervals; and the soil water content in the top soil layer changed rapidly for the influence of rainfall and evaporation in upper boundary; the simulated root depth and the root length density down the profile at intervals were satisfactory except for few data; and the modeling results of transpiration and evaporation were reliable. So the new proposed model is reasonable, and it can model the root growth and water transfer effectively in the soil-crop-atmosphere system.

Key words: water dynamics    soil-crop-atmosphere system    root length density distribution    finite element method (FEM)
出版日期: 2009-12-01
:  TV 93  
通讯作者: 张土乔,男,教授,博导.     E-mail: ztq@ccea.zju.edu.cn
作者简介: 杨德军(1981-),男,山东烟台人,博士生,从事市政工程和农田水利工程研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨德军
张土乔
ZHANG Ke-feng

引用本文:

杨德军, 张土乔, ZHANG Ke-feng, 等. 土-作物-大气系统中动态根系生长及水动力学模拟[J]. J4, 2009, 43(11): 2048-2053.

YANG De-Jun, ZHANG Cha-Jiao, ZHANG Ke-feng, et al. Simulation of dynamic root growth and water transfer in soil-crop-atmosphere system. J4, 2009, 43(11): 2048-2053.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.11.019        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I11/2048

[1] BASTIAANSSEN W G M, ALLEN R G, DROOGERS P, et al. Twenty-five years modeling irrigated and drained soils: state of the art [J]. Agricultural Water Management, 2007, 92(3): 111125.
[2] AHUJA L R, MA L, HOWELL T A. Agricultural system models in field research and technology transfer [M]. Boca Raton: Lewis Publishers, 2002.
[3] IMNEK J, SEJNA M, VAN GENUCHTEN M T H. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variably-saturated media. Version 2.0 [EB/OL]. [2008-11-1]. http:∥www.pc-progress.cz/Fr_Hydrus2D.htm/2008-11-1.
[4] SOMMA F, CLAUSNITZER V, HOPMANS J W. An algorithm for three-dimensional, simultaneous modeling of root growth, transient soil water flow, and solute transport and uptake, V.2.1 [D]. Davis: Land, Air and Water Resources Paper No. 100034, University of California, 1997.
[5] SOMMA F, HOPMANS J W, CLAUSNITZER V. Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake [J]. Plant and Soil, 1998, 202(2): 281-293.
[6] DE WIT C T, VAN KEULEN H, SELIGMAN H G, et al. Application of interactive multiple goal programming techniques for analysis and planning of regional agricultural development [J]. Agricultural System, 1988, 26(3): 211-230.
[7] DRIESSEN P M, KONIJN N T. Land-use system analysis [M]. Wageningen: Wageningen Agricultural University, 1992.
[8] ZHANG K F, GREENWOOD D J, WHITE P J, et al. A dynamic model for the combined effects of N, P and K fertilizers on yield and mineral composition: description and experimental test [J]. Plant and Soil, 2007, 298(1/2): 81-98.
[9] RITCHIE J T, HANKS J. Plants and soil systems [M]. ASA-CSSA-SSSA, 1991.
[10] BRISSON N, GARY C, JUSTES E, et al. An overview of the crop model STICS [J]. European Journal of Agronomy, 2003, 18(3): 309-332.
[11] ABRAHAMSEN P, HANSEN S. DAISY: an open soil-crop-atmosphere system model [J]. Environmental Modelling and Software, 2000, 15(3): 313-330.
[12] 丛振涛,雷志栋,胡和平. 冬小麦生长与土壤-植物-大气连续体水热运移的耦合研究II:模型验证与应用[J]. 水利学报, 2005, 36(6): 1-6.
CONG Zhen-tao, LEI Zhi-dong, HU He-ping, et al. Study on coupling between winter wheat growth and water-heat transfer in soil-plant-atmosphere continuum II: model verification and application [J]. Shui Li Xue Bao, 2005, 36(6): 1-6.
[13] 胡克林,李保国,陈研,等. 作物生长与土壤水氮运移联合模拟的研究1:模型[J]. 水利学报, 2007, 38(7): 779-785.
HU Ke-lin, LI Bao-guo, CHEN Yan, et al. Coupled simulation of crop growth with soil water-heat nitrogen transport 1: model [J]. Shui Li Xue Bao, 2007, 38(7): 779-785.
[14] ZHANG K, YANG D, GREENWOOD D J, et al. Development and critical evaluation of a generic 2-D agro-hydrological model (SMCR_N) for the responses of crop yield and nitrogen composition to nitrogen fertilizer [J]. Agriculture, Ecosystems and Environment, 2009, 132(1/2): 160-172.
[15] ASSENG S, RICHTER C, WESSOLEK G. Modelling root growth of wheat as the linkage between crop and soil [J]. Plant and Soil, 1997, 190(2): 267-277.
[16] ZUO Qiang, JIE Feng, ZHANG Ren-duo, et al. A generalized function of wheats root length density distributions [J]. Vadose Zone Journal, 2004, 3(1): 271-277.
[17] PRASAD R. A linear root-water-uptake model [J]. Journal of Hydrology, 1988, 99(3/4): 297-306.
[18] JAMIESON P D, PORTER J R, GOUDRIAAN J, et al. A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought [J]. Field Crops Research, 1998, 55(1/2): 23-44.
[19] MUSTERS P A D, BOUTEN W. A method for identifying optimum strategies of measuring soil water contents for calibrating a root water uptake model [J]. Journal of Hydrology, 2000, 227(1-4): 273-286.
[20] WU J, ZHANG R, GUI S. Modeling soil water movement with water uptake by roots [J]. Plant and Soil, 1999, 215(1): 7-17.
[21] PEDERSEN A, ZHANG K, THORUP K K, et al. Modelling diverse root density dynamics and deep nitrogen uptake: a simple approach [J]. Plant and Soil, 2009, doi:10.1007/s11104-009-0028-8.
[22] YANG D, ZHANG T, ZHANG K, et al. An easily implemented ago-hydrological procedure with dynamic root simulation for water transfer in the crop-soil system: validation and application [J]. Journal of Hydrology, 2009, 370: 177-190.
[23] VAN GENUCHTEN M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44: 892-898.
[24] FEDDES R A, KOWALIK P J, ZARADNY H. Water uptake by plant roots [M]∥ Simulation of field water use and crop yield. New York: John Wiley & Sons Inc, 1978: 16-30.
[25] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements [M]. Rome: Food and Agriculture Organization, 1998: Irrigation and Drainage Paper 56.
[26] GROOP J J R, VERBERNE E L J. Response of wheat to nitrogen fertilization, a data set to validate simulation models for nitrogen dynamics in crop and soil [J]. Fertilizer Research, 1991, 27(2/3): 349-383.
[27] VAN GENUCHTEN M Th, LEIJ F J, YATES S R. The RETC code for quantifying the hydraulic functions of unsaturated soils [EB/OL]. [2008-11-1].http:∥www.pc-progress.cz/Fr_Hydrus2D.htm.

[1] 董红召, 章丽萍, 刘冬旭, 陈宁. 公共自行车系统服务点布设的有限元估算方法[J]. 浙江大学学报(工学版), 2017, 51(6): 1097-1103.
[2] 欧阳小平,薛志全,彭超,周清和,杨华勇. 航空作动器的VL密封特性分析[J]. 浙江大学学报(工学版), 2015, 49(9): 1755-1761.
[3] 王彤, 谢旭, 王渊, 史鹏程. 桁腹式组合桁梁结构计算理论[J]. J4, 2014, 48(4): 711-720.
[4] 伍程杰, 龚晓南, 俞峰, 楼春晖, 刘念武. 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报(工学版), 2014, 48(4): 671-678.
[5] 孟捷 ,刘华锋 ,岳茂雄 ,胡红杰. 生物力学模型导引的心肌运动与材料参数对偶估计[J]. J4, 2012, 46(5): 912-917.
[6] 沈国辉, 孙炳楠, 叶尹, 楼文娟. 高压输电塔的断线分析和断线张力计算[J]. J4, 2011, 45(4): 678-683.
[7] 王文浩, 郭吉丰, 胡锡幸. 高速高效率的行波型锥面超声波电机[J]. J4, 2011, 45(4): 754-758.
[8] 杨陈, 郝志勇, 陈馨蕊. 热负荷对柴油机结构强度及密封性能的影响[J]. J4, 2010, 44(4): 756-760.
[9] 王亚军, 张我华. 双重流动法则下地基黏塑性随机有限元方法[J]. J4, 2010, 44(4): 798-805.
[10] 马有理. 倾斜裂纹的应力分布与裂纹面开口位移的关系[J]. J4, 2009, 43(8): 1443-1447.
[11] 李伟, 薛明德, 向志海. 刚体-附件耦合系统热-动力学稳定性分析[J]. J4, 2009, 43(7): 1288-1292.
[12] 谢旭 朱越峰 张治成 黄剑源. 波形钢腹板预应力混凝土箱梁结构空间分析方法[J]. J4, 2008, 42(9): 1506-1514.
[13] 夏永明 卢琴芬 蒋宇强 叶云岳 方攸同. 双定子直线振荡电机的设计[J]. J4, 2008, 42(4): 667-671.
[14] 沈国辉 何运祥 孙炳楠 叶尹 楼文娟 李宏男. 绝缘子断裂对大跨越输电线路的动力效应[J]. J4, 2008, 42(11): 1990-1995.
[15] 朱越峰 吴朴 谢旭 张鹤. 部分波形钢腹板箱梁桥受力特性分析[J]. J4, 2008, 42(1): 122-128.