Please wait a minute...
J4  2009, Vol. 43 Issue (11): 2034-2037    DOI: 10.3785/j.issn.1008-973X.2009.11.016
生物医学工程     
基于Hough变换的斑马鱼胚胎图像分析技术
许晓燕1,夏顺仁1,LIU Tian-ming2,WONG Stephen T C2
(1.浙江大学 生物医学工程教育部重点实验室,浙江 杭州 310027;2.生物信息学中心,神经变性修复哈佛中心,哈佛医学院,波斯顿,美国)
Hough transformation based analysis technique for zebrafish embryo images
XU Xiao-yan1, XIA Shun-ren1, LIU Tian-ming2, WONG Stephen T C2
(1. Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China;
2. Center for Bioinformatics, Harvard Center for Neurodegeneration and Repair, Harvard Medical School, Boston, USA)
 全文: PDF(633 KB)  
摘要:

在拼接后的斑马鱼胚胎显微图像基础上提出胚胎图像分析算法,以确定斑马鱼胚胎的3个形态特征:长度、头-干夹角以及尾部弯曲度.采用形态学方法将斑马鱼胚胎从背景中分割出来,然后采用二值细化算法提取它的中心线,最后测量上述形态特征.在测量尾部弯曲度时,采用环形Hough变换法去除胚胎头部,再由最小面积法将尾部曲线回归成一条直线,引入表示尾部曲线与回归直线间平均距离的均方根误差来表征尾部的弯曲度.实验结果表明,该自动分析技术处理速度较快,可以获得准确的形态参数值.

关键词: 斑马鱼图像分割形态特征Hough变换直线回归的最小面积法    
Abstract:

An analysis technique based on patched zebrafish embryo microscopic images was proposed to develop a computerized tool for zebrafish image analysis and quantitation. Three morphological features: lengths, head-trunk angles and tail curvatures of zebrafish embryos were obtained. First, morphological operations were used to segment the zebrafish embryo from the background. Then, its central line was extracted by using the binary image thinning algorithm. At last, three features were calculated. As for the tail curvatures, the modified circular Hough transformation was applied to remove the head of the fish, then the curved skeleton of the tail was regressed onto a straight line by using the least area method. The root mean squared error (RMSE) which represented the averaged distance between the skeleton curve and the regressed line was used as the third feature. Experimental results show that the computerized analysis technique has high accuracy and runs fast.

Key words: zebrafish    image segmentation    morphological feature    Hough transformation    least area method for linear regression
出版日期: 2009-12-01
:  TP 391.41  
基金资助:

国家安全重大基础研究资助项目(5132103ZZT14B);国家自然科学基金资助项目(60772092).

通讯作者: 夏顺仁,男,教授.     E-mail: srxia@zju.edu.cn
作者简介: 许晓燕(1985-),女,江苏南通人,硕士生,从事生物医学信息学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许晓燕
夏顺仁
LIU Tian-ming

引用本文:

许晓燕, 夏顺仁, LIU Tian-ming, 等. 基于Hough变换的斑马鱼胚胎图像分析技术[J]. J4, 2009, 43(11): 2034-2037.

HU Xiao-Yan, JIA Shun-Ren, LIU Tian-ming, et al. Hough transformation based analysis technique for zebrafish embryo images. J4, 2009, 43(11): 2034-2037.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.11.016        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I11/2034

[1] PENBERTHY W T, SHAFIZADEH E, LIN S. The zebrafish as a model for human disease [J]. Frontiers in Bioscience, 2002, 7: D1439-D1453.
[2] STERN H M, ZON L I. Cancer genetics and drug discovery in the zebrafish [J]. Nature Reviews Cancer, 2003, 3(7): 533-539.
[3] PATTON E E, ZON L I. The art and design of genetic screens: zebrafish [J]. Nature Reviews Genetics, 2001, 2(12): 956-966.
[4] STREISINGER G, WALKER C, DOWER N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio) [J]. Nature, 1981, 291(5813): 293-296.
[5] BENALI A, LEEFKEN I, EYSEL U, et al. A computerized image analysis system for quantitative analysis of cells in histological brain sections [J]. Journal of Neuroscience Methods, 2003, 125(1/2): 33-43.
[6] KLIMASCHEWSKI L, NINDL W, PIMPL M, et al. Biolistic transfection and morphological analysis of cultured sympathetic neurons [J]. Journal of Neuroscience Methods, 2002, 113(1): 63-71.
[7] KIMMEL C B, BALLARD W W, KIMMEL S R, et al. Stages of embryonic development of the zebrafish [J]. Developmental Dynamics, 1995, 203(3): 253-310.
[8] LAM L, LEE S W, SUEN C Y. Thinning methodologies: a comprehensive survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(9): 869-885.
[9] LIU Tian-ming, LU Jian-feng, YE Wang, et al. Computerized image analysis for quantitative neuronal phenotyping in zebrafish [J]. Journal of Neuroscience Methods, 2006, 153(2): 190-202.
[10] JAIN A K. Fundamentals of digital image processing [M]. Englewood Cliffs: Prentice-Hall, 1989:342-430.
[11] HOUGH P V C. Machine analysis of bubble chamber pictures [C]∥International Conference on High Energy Accelerators and Instrumentation. Geneva: CERN, 1959: 554-556.
[12] 丁勇. 直线回归的最小面积法[J]. 工程数学学报, 2003, 20(3): 139-142.
DING Yong. Least area method for linear regression [J]. Chinese Journal of Engineering Mathematics, 2003, 20(3): 139-142.

[1] 廖苗, 赵于前, 曾业战, 黄忠朝, 张丙奎, 邹北骥. 基于支持向量机和椭圆拟合的细胞图像自动分割[J]. 浙江大学学报(工学版), 2017, 51(4): 722-728.
[2] 张建廷,张立民. 新型自适应稳健双边滤波图像分割[J]. 浙江大学学报(工学版), 2016, 50(9): 1703-1710.
[3] 胡祝华, 赵瑶池, 程杰仁, 彭金莲. 基于改进DRLSE的运动目标分割方法[J]. 浙江大学学报(工学版), 2014, 48(8): 1488-1495.
[4] 刘中, 陈伟海, 吴星明, 邹宇华, 王建华. 基于双目视觉的显著性区域检测[J]. J4, 2014, 48(2): 354-359.
[5] 陈越超, 周晓军, 杨辰龙, 李钊. L型CFRP构件R区微观形态及孔隙特征[J]. 浙江大学学报(工学版), 2014, 48(10): 1775-1880.
[6] 李光廷, 禹卫东. 马尔可夫随机场SAR图像分割的快速实现技术[J]. J4, 2012, 46(10): 1810-1815.
[7] 吴一全,张晓杰,吴诗婳,张生伟. 基于混沌PSO或分解的二维最小误差阈值分割[J]. J4, 2011, 45(7): 1198-1205.
[8] 谢强军, 侯迪波, 黄平捷, 张光新, 周泽魁. 基于半隐差分的单参数水平集快速分割[J]. J4, 2010, 44(8): 1496-1501.
[9] 刘士荣, 王凯, 邱雪娜. 基于自适应混合高斯模型全方位视觉目标检测[J]. J4, 2010, 44(7): 1387-1393.
[10] 周泓, 徐海儿, 耿晨歌. 基于HSI模型和Hough变换的指针式汽车仪表自动校验[J]. J4, 2010, 44(6): 1108-1112.
[11] 蔡晋辉, 张光新, 才辉. 基于连通掩模的重构开算子及应用[J]. J4, 2010, 44(4): 675-680.
[12] 孔丁科, 汪国昭. 用于图像分割的边界保持局部拟合模型[J]. J4, 2010, 44(12): 2236-2240.
[13] 张赞超, 夏顺仁. 全自动尿液图像识别技术[J]. J4, 2009, 43(5): 832-838.
[14] 杨彬蔚 陆系群. 抗纹理噪声干扰的纺织印染图像分割技术[J]. , 2009, 43(4): 668-672+737.
[15] 吴洪森 冯志林 周佳男 刘小明 董金祥. 基于相位场模型的提花织物图像分割算法[J]. J4, 2008, 42(3): 444-449.