Please wait a minute...
J4  2009, Vol. 43 Issue (5): 920-925    DOI: 10.3785/j.issn.1008-973X.2009.05.026
能源与环境工程     
神华配煤孔隙分形对燃烧特性的影响
程军,潘华引,黄镇宇,禹立坚,周俊虎,岑可法
(浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027)
Effects of pore fractal structures on combustion of Shenhua coal blends
CHENG Jun, PAN Hua-yin, HUANG Zhen-yu, YU Li-jian, ZHOU Jun-hu, CEN Ke-fa
(State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(1318 KB)  
摘要:

利用氮气吸附仪、沉降炉、扫描电镜(SEM)和X-射线能谱仪(EDS)研究了动力配煤的孔隙分形结构对着火和燃烧特性的影响.对神华煤分别与准格尔煤和澳洲煤组成的配煤研究表明,配煤孔隙分形维数随单煤比例呈现出单调变化规律,并且与比表面积和比孔容积的变化规律基本一致.当神华配煤的分形维数由2.451增加到2.482和2.532时,着火温度由783 ℃降低到587 ℃和462 ℃,飞灰中碳的质量分数由3.62%减少到2.83%和1.83%,说明配煤的分形维数越大则越容易着火和燃尽.随着准格尔煤比例增加和神华煤比例减少,燃烧渣样中硅铝质量比减小且灰熔点提高,导致配煤的结渣程度明显减轻.

关键词: 配煤分形神华煤孔隙燃烧    
Abstract:

The nitrogen adsorption instrument, drop tube furnace, scanning electronic microscope (SEM) and X-ray energy dispersive spetrometer (EDS) were used to study the effects  of pore fractal structures on combustion of coal blends. The results showed that the pore fractal dimensions of Shenhua coal blends monotonously change with the blend ratio of a parent coal, which is consistent with the specific surface areas and pore volumes. When the pore fractal dimension of the coal blends increases from 2.451 to 2.482 and 2.532, the ignition temperature decreases from 783 ℃ to 587 ℃ and 462 ℃, while the unburned carbon mass fraction in the fly ash decreases from 3.62% to 2.83% and 1.83%. It implies that the coal blends with larger pore fractal dimension are easier to ignite and burn out. When the Zhungeer coal content  increases and the Shenhua coal content  decreases in the coal blends, the ratio of SiO2 to Al2O3 in the combustion slag of coal blends decreases and the ash softening temperature increases, which results in a lower slagging degree.

Key words: coal blends    fractal    Shenhua coal    porosity    combustion
出版日期: 2009-06-01
:  TQ531  
基金资助:

国家科技支撑计划资助项目(2006BAA01B06);国家“973”重点基础研究发展规划资助项目(2004CB217701).

作者简介: 程军(1974-),男,山东济宁人,副教授,从事可再生能源和煤高效低污染燃烧研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程军
潘华引
黄镇宇

引用本文:

程军, 潘华引, 黄镇宇, 等. 神华配煤孔隙分形对燃烧特性的影响[J]. J4, 2009, 43(5): 920-925.

CHENG Jun, BO Hua-Yin, HUANG Tian-Yu, et al. Effects of pore fractal structures on combustion of Shenhua coal blends. J4, 2009, 43(5): 920-925.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.05.026        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I5/920

[1] SU S, POHL J H, HOLCOMBE D, et al. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers [J]. Progress in Energy and Combustion Science, 2001, 27(1): 7598.
[2] BISWAS S, CHOUDHURY N, SARKAR P, et al. Studies on the combustion behaviour of blends of Indian coals by TGA and drop tube furnace [J]. Fuel Processing Technology, 2006, 87(3): 191199.
[3] HELLE S, GORDON A, ALFARO G, et al. Coal blend combustion: link between unburnt carbon in fly ashes and maceral composition [J]. Fuel Processing Technology, 2003, 80(3): 209223.
[4] BACKREEDY R I, JONES J M, MA L, et al. Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends [J]. Fuel, 2005, 84(17): 21962203.
[5] RUSHDI A, SHARMA A, GUPTA R. An experimental study of the effect of coal blending on ash deposition [J]. Fuel, 2004, 83(4/5): 495506.
[6] SU S, POHL J H, HOLCOMBE D, et al. Slagging propensities of blended coals [J]. Fuel, 2001, 80(9): 13511360.
[7] YIN C G, LUO Z Y, ZHOU J H, et al. A novel non-linear programming-based coal blending technology for power plants [J]. Chemical Engineering Research and Design, 2000, 78(1): 118124.
[8] MAHAMUD M M, NOVO M F. The use of fractal analysis in the textural characterization of coals [J]. Fuel, 2008, 87(2): 222231.
[9] MAHAMUD M, LOPEZ O, PIS J J, et al. Textural characterization of coals using fractal analysis [J]. Fuel Processing Technology, 2003, 81(2): 127142.
[10] MEDEK J, WEISHAUPTOVA Z. The microporous phase of carbonaceous substances and its fractal dimension [J]. Fuel, 2000, 79(13): 16211626.
[11] YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals [J]. International Journal of Coal Geology, 2008, 73(1): 2742.
[12] HU S, LI M, XIANG J, et al. Fractal characteristic of three Chinese coals [J]. Fuel, 2004, 83(10): 13071313.
[13] 姜秀民,杨海平,闫澈,等. 超细化煤粉表面形态分形特征[J]. 中国电机工程学报,2003, 23(12): 165169.
JIANG Xiu-min, YANG Hai-ping, YAN Che, et al. Fractal characteristic of surface structure of micro- pulverized coal [J]. Proceedings of CSEE, 2003, 23(12): 165169.
[14] 平传娟,周俊虎,程军,等. 混煤热解过程中的表面形态[J]. 化工学报, 2007, 58(7): 17981804.
PING Chuan-juan, ZHOU Jun-hu, CHENG Jun, et al. Surface structure of blended coals during pyrolysis [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 17981804.
[15] 周俊虎,李艳昌,程军,等. 精细水煤浆的颗粒分形特征对燃烧特性的影响规律[J]. 化工学报, 2007, 58(7): 18051809.
ZHOU Jun-hu, LI Yan-chang, CHENG Jun, et al. The impact of ultra-clean micronized coal water slurrys particle fractal dimension on its combustion characteristic [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 18051809.
[16] 张保生,刘建忠,程军,等. 微分差热法确定沉降炉试验中低挥发分混煤着火点[J]. 浙江大学学报:工学版, 2008, 42(5): 839842.
ZHANG Bao-sheng, LIU Jian-zhong, CHENG Jun, et al. Derivative differential thermal method for determining igniting point of low-volatile blending coals in subsiding furnace [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(5): 839842.
[17] 岑可法,樊建人,池作和,等. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M]. 北京:科学出版社,1994.

[1] 赵庆辰, 周俊虎, 王业峰, 龙宇, 李欣婷, 杨卫娟. 微小圆管内正丁醇催化燃烧及动力学特性[J]. 浙江大学学报(工学版), 2018, 52(1): 59-64.
[2] 段毅, 程乐鸣, 吴雪松, 邱坤赞, 骆仲泱. 内嵌换热面双层多孔介质预混燃烧试验研究[J]. 浙江大学学报(工学版), 2017, 51(8): 1626-1632.
[3] 于洋, 徐长节, 朱陈, 徐倩. 爆孕育过程的微震源事件空间分形行为[J]. 浙江大学学报(工学版), 2017, 51(11): 2175-2181.
[4] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[5] 姚丹, 张捷, 王瑞乾, 肖新标, 金学松. 卧铺动车组床垫材料吸声特性测试及仿真优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1486-1492.
[6] 夏宇,仇性启,惠媛媛. 伴有参与性介质的开口系统传热研究[J]. 浙江大学学报(工学版), 2016, 50(7): 1367-1372.
[7] 胡亚元, 杨秋华. YinGraham流变模型沉降简化计算统一公式[J]. 浙江大学学报(工学版), 2016, 50(6): 1009-1017.
[8] 李春艳,张功,刘杰,高忠权. 排除法确定离子电流成因的试验[J]. 浙江大学学报(工学版), 2016, 50(5): 978-983.
[9] 周昊, 马炜晨, 杨玉, 陈建中. 低氮煤粉旋流燃烧器火焰特性的研究[J]. 浙江大学学报(工学版), 2016, 50(4): 698-703.
[10] 刘子豪, 周昊, 周明熙, 程明, 刘瑞鹏, 岑可法. 焦粉粒径对烧结床中燃烧带分布的影响[J]. 浙江大学学报(工学版), 2016, 50(4): 691-697.
[11] 李媛, 尹雪峰, 张志磊. 负钛铜基载氧体在煤化学链燃烧中多环芳烃的生成[J]. 浙江大学学报(工学版), 2016, 50(2): 360-368.
[12] 黄眺,杨卫娟,周俊虎,王智化,刘建忠,岑可法. 微型圆管中正庚烷/空气预混催化燃烧特性实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2058-2063.
[13] 唐志刚,张力,陈曦,王庆朋. 壁面温度对微型内燃机燃烧特性的影响[J]. 浙江大学学报(工学版), 2016, 50(11): 2107-2112.
[14] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[15] 周永刚,李培,敖翔,赵虹. 基于燃烧均匀性的对冲燃烧锅炉高温腐蚀抑制[J]. 浙江大学学报(工学版), 2015, 49(9): 1768-1775.