Please wait a minute...
J4  2009, Vol. 43 Issue (6): 1147-1151    DOI: 10.3785/j.issn.1008-973X.2009.06.031
机械工程、电气工程     
交指状流场质子交换膜燃料电池的数值分析
胡桂林1,2,樊建人2
(1.浙江科技学院 轻工学院, 浙江 杭州 310023; 2.浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027)
Numerical analysis of proton exchange membrane fuel cell with interdigitated flow fields
HU Gui-lin1,2, FAN Jian-ren2
(1. School of Light Industry, Zhejiang University of Science and Technology, Hangzhou 310023, China;
2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(2360 KB)  
摘要:

为研究流场结构设计对电池内的流动、组分传递和电池性能等的影响,建立了一个稳态的三维非等温质子交换膜燃料电池数学模型,应用此模型对一个交指状流场设计的电池单体(电极面积为64 cm ×65 cm)进行了数值研究.数值计算得到了电池的温度、组分质量浓度和局部电流密度等的空间分布,分析了不同电池反应物湿度等对电池特性的影响.结果表明,受传质的影响,沟道下方阴极催化层的温度大于相应沟脊下方的区域;与饱和气流进气的基本工况相比,降低阴极的进气湿度能提高电池的性能,而降低阳极的进气湿度则会导致电池性能的下降.

关键词: 质子交换膜燃料电池交指状流场两相流组分传递    
Abstract:

In order to investigate the effects of the flow field structure design on the flow characteristics, species transport and cell performance, a steadystate threedimensional nonisothermal mathematical model based on computation fluid dynamics was presented. The developed mathematical model was employed to numerically study a single proton exchange membrane fuel cell with interdigitated flow fields (with the electrode area of 64 cm×65 cm), and the spatial distributions of temperature, species concentration and local current density were obtained. Furthermore, the effect of different reactant humidity on the cell performance was discussed. The results indicate that the temperature in the  cathode catalyst layer under the channel is higher than that under the shoulder; compared with the case of saturated inlet reactants, the decrease of cathode gas relative humidity will enhance the cell performance, while the decrease of anode gas relative humidity will reduce the cell performance.

Key words: species transport    proton exchange    membrane fuel cell    interdigitated flow field    twophase flow
出版日期: 2009-07-01
:  TM991.4  
基金资助:

国家自然科学基金资助项目(50806068,50706045);教育部科学技术研究重点资助项目(207043);浙江省自然科学基金资助项目(Y106161);能源清洁利用国家重点实验室开放课题资助项目(ZJUCEU2008001).

作者简介: 胡桂林(1975-),男,江西南昌人,副教授,从事燃料电池基础研究和气固两相流直接模拟研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡桂林
樊建人

引用本文:

胡桂林, 樊建人. 交指状流场质子交换膜燃料电池的数值分析[J]. J4, 2009, 43(6): 1147-1151.

HU Gui-Lin, FAN Jian-Ren. Numerical analysis of proton exchange membrane fuel cell with interdigitated flow fields. J4, 2009, 43(6): 1147-1151.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.06.031        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I6/1147

[1] BERNARDI D M, VERBRUGGE M W. A mathematical model of the solid-polymer- electrolyte fuel cell [J]. Journal Electrochem Soc, 1992, 139: 2477-2491.
[2] NGUYEN T V, WHITE R E. A water and heat management model for proton-exchange- membrane fuel cells [J]. Journal Electrochem Soc, 1993, 140(8): 2178-2186.
[3] GURAU V, LIU H T, SADIK K. Two-dimensional model for proton exchange membrane fuel cells [J]. AICHE Journal, 1998, 44(11): 2410-2422.
[4] BERNING T, LU D M, DJILALIN. Three- dimensional computational analysis of transport phenomena in a PEM fuel cell [J]. Journal Power Sources, 2002, 106(1): 284-294.
[5] DUTTA S, SHIMPALEE S, VAN ZEE J W. Three-dimensional numerical simulation of straight channel PEM fuel cells [J]. Journal Appl Electrochem, 2000, 30: 135-146.
[6] MENG H. Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model [J]. Journal of Power Sources, 2007,171(2): 73846.
[7] WANG Z H, WANG C Y, CHEN K S. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cell [J]. Journal Power Sources, 2001, 94(1): 40-50.
[8] NATARAJAN D, NGUYEN V T. A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors [J]. Journal Electrochem Soc, 2001, 148(12): A1324-1335.
[9] 胡桂林, 樊建人, 岑可法. 复杂流道质子交换膜燃料电池的三维数值分析 [J]. 浙江大学学报:工学版, 2005,39(7):1025-1030.
HU Gui-lin, FAN Jian-ren, CEN Ke-fa. Three-dimensional numerical analysis of proton exchange membrane fuel cell with complex flow fields [J]. Journal of Zhejiang University: Engineering Science, 2005,39(7):1025-1030.
[10] KAZIM A, LIU H T, FORGES P. Modeling of performance of PEM fuel cells with conventional and interdigitated flow fields [J]. Journal Appl Electrochem, 1999, 29(12):1409-1416.
[11] WANG Xiao-dong, DUAN Yuan-yuan, YAN Wei-mon, et al. Effect of humidity of reactants on the cell performance of PEM fuel cells with parallel and interdigitated flow field designs [J], Journal of Power Sources,2008, 176(1):247-258.
[12] 胡桂林, 樊建人. 交指状流场质子交换膜燃料电池的流动特性[J]. 能源工程, 2008 (4): 12-16.
HU Gui-lin, FAN Jian-ren. Flow characteristics of proton exchange membrane fuel cell with interdigitated flow fields [J]. Energy Engineering, 2008 (4):12-16.

[1] 王世学,齐贺. 加湿温度对燃料电池性能影响的实验研究[J]. 浙江大学学报(工学版), 2015, 49(11): 2193-2197.
[2] 董康, 周昊, 杨玉, 王凌力, 岑可法. 二次风风量对旋流燃烧器气固流动特性的影响[J]. 浙江大学学报(工学版), 2014, 48(12): 2162-2171.
[3] 沈跃良,周昊 ,胡敏 ,杨玉 ,吴剑波 ,岑可法. 静电网格系统在旋流燃烧器流场测量中的应用[J]. J4, 2013, 47(9): 1658-1665.
[4] 周昊, 吴剑波, 杨玉, 李亚鹏, 胡善涛, 岑可法. 旋流燃烧器出口气固两相流场的
光学波动法测量研究
[J]. J4, 2012, 46(12): 2189-2193.
[5] 吴学成, 王怀, 浦世亮, 浦兴国, 袁镇福, 陈玲红, 岑可法. 数字共轴全息中颗粒识别与定位[J]. J4, 2010, 44(4): 765-770.
[6] 王勇, 孔令伟, 郭爱国, 柏巍. 气体释放速率对浅层气藏中气水运移的影响[J]. J4, 2010, 44(10): 1883-1889.
[7] 尹俊连, 焦磊, 仇性启, 等. 旋流喷嘴内部流场的数值模拟和实验研究[J]. J4, 2009, 43(5): 968-972.
[8] 严建华, 刘亚纳, 李晓东, 等. 不同气氛下气液两相滑动弧放电降解甲基紫[J]. J4, 2009, 43(5): 931-936.
[9] 焦波 邱利民 张洋. 低温重力热管传热性能的理论与实验研究[J]. J4, 2008, 42(11): 1966-1972.
[10] 彭珍瑞 王保良 黄志尧 李海青. 基于电容层析成像和LS-SVM的空隙率测量[J]. J4, 2007, 41(6): 877-880.
[11] 马龙博 张宏建 周洪亮 贺庆. 基于差压法的油水两相流的流量测量[J]. J4, 2007, 41(2): 365-368.
[12] 梁强 周洪亮 张宏建 孙斌 岳伟挺. 气液两相流波动系数及其在流型识别中的应用[J]. J4, 2007, 41(11): 1810-1815.
[13] 刘永兵 陈纪忠 阳永荣. 管道内液固浆液输送的数值模拟[J]. J4, 2006, 40(5): 858-863.
[14] 熊红兵 朱泽飞 林建忠. 三维等离子体射流中空气的卷吸和粒子的氧化[J]. J4, 2006, 40(4): 708-713.
[15] 李世伦 杨敬强 杨俊毅 叶树明 陈鹰. 深海底栖生物分离装置流道解堵[J]. J4, 2006, 40(2): 313-316.