Please wait a minute...
J4  2009, Vol. 43 Issue (7): 1332-1336    DOI: 10.3785/j.issn.1008-973X.2009.
能源与地质工程     
热重-红外联用气体产物光谱信号定量研究
 陈玲红, 吴学成, 岑可法
(浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027)
Quantitative research of evolved gas rate by TGA-FTIR
 CHEN Ling-Gong, TUN Hua-Cheng, CEN Ge-Fa
(State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(995 KB)  
摘要:

针对热重-红外联用分析中确定气体产物的释放速率对了解热分解过程、气固反应的重要性, 通过关联热重分析仪中测得的固体样品质量损失速率, 提出了依据傅里叶红外光谱仪测得的非对称性气体产物响应光谱信号强度时间变化,获得该气体逸出速率的定量校正分析方法.并以热重-红外联用碳酸钙样品热分解过程为例, 重点讨论了载气流速、样品质量等参数对逸出气体光谱信号滞后、形变的影响. 结果发现,气体传输滞留时间、扩散逆混合时间主要取决于载气流速, 而与样品质量无关.

关键词: 热重-红外联用气体逸出速率定量校正方法    
Abstract:

Abstract: Quantitative determination of the evolved gas rate in the combined theromogravimetry (TGA) and Fourier transform infrared (FTIR) analysis is important when investigating decomposition processes or gas-solid reactions. A quantitative calibration method was developed to obtain the evolved nonhomonuclear gas rate from the temporal FTIR absorbance intensity signal by relating with the solid sample mass loss rate in TGA measurement. Based on experimental studies of decomposition of calcium carbonate in TGA-FTIR applications, the influence of several experimental parameters such as the carrier gas flow rate and sample mass on the delay and shape deviation of FTIR signal was discussed. The results showed that the time of transport delay, diffusion and back-mixing was dependent on the carrier flow rate, but independent on the sample mass.

Key words: TGA-FTIR    evolved gas rate    quantitative calibration method
出版日期: 2009-08-01
:  TK6  
基金资助:

教育部留学回国人员科研启动基金资助项目;国家自然科学基金重点资助项目(60534030);国家重点基础研究发展计划资助项目(2009CB219802).

作者简介: 陈玲红(1972-), 女, 浙江绍兴人,工程师, 从事燃烧过程中污染物形成及抑制的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈玲红
吴学成
岑可法

引用本文:

陈玲红, 吴学成, 岑可法. 热重-红外联用气体产物光谱信号定量研究[J]. J4, 2009, 43(7): 1332-1336.

CHEN Ling-Gong, TUN Hua-Cheng, CEN Ge-Fa. Quantitative research of evolved gas rate by TGA-FTIR. J4, 2009, 43(7): 1332-1336.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I7/1332

[1] GIROUX L, CHARLAND J P, MACPHEE J A. Application of thermogravimetric fourier transform infrared spectroscopy (TG-FTIR) to the analysis of oxygen functional groups in coal [J]. Energy & Fuels, 2006, 20(5): 19881996.
[2] 王树荣,刘倩,骆仲泱,等. 基于热重红外联用分析的纤维素热裂解机理研究[J].浙江大学学报:工学版, 2006, 40(7):11541158.
WANG Shu-rong, LIU Qian, LUO Zhong-yang,et al. Mechanism study of cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(7): 11541158.
[3] 祝红梅, 蒋旭光, 池涌, 等. 热重-红外联用分析医疗垃圾的热动力学特性[J]. 工程热物理学报, 2008, 29(3): 519522.
ZHU Hong-mei, JIANG Xu-guang, CHI yong, et al. Study on kinetic Characteristic of medical waste by using TG-FTIR analysis [J]. Journal of Engineering Thermophysics, 2008, 29(3): 519522.
[4] MARSANICH K, BARONTINI F, COZZANI V, et al. Advanced pulse calibration techniques for the quantitative analysis of TG-FTIR data[J]. Thermochimica Acta, 2002, 390(1-2): 153168.
[5] EIGENMANN F, MACIEJEWSKI M, BAIKER A. Quantitative calibration of spectroscopic signals in combined TG-FTIR system [J]. Thermochimica Acta, 2006, 440: 8192.

[1] 王琦, 姚燕, 王树荣, 等. 生物油离子交换树脂催化酯化试验研究[J]. J4, 2009, 43(5): 926-930.