Please wait a minute...
J4  2009, Vol. 43 Issue (7): 1312-1315    DOI: 10.3785/j.issn.1008-973X.2009.
材料与化学工程     
脱脂棉纤维增强壳聚糖棒材
王征科,胡巧玲,吕佳,王幽香,沈家骢
(浙江大学 教育部高分子合成与功能构造重点实验室,浙江 杭州310027)
Chitosan rod reinforced with absorbent cotton fibers
WANG Zheng-ke, HU Qiao-ling, LV Jia, WANG You-xiang, SHEN Jia-cong
(Key laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(1132 KB)  
摘要:

以三氟乙酸在无水条件下溶解脱脂棉纤维,在壳聚糖的醋酸溶液中析出.脱脂棉纤维均匀稳定地分散在粘稠的壳聚糖溶液中,采用原位沉析法制备得到脱脂棉纤维增强的具有层状叠加结构的壳聚糖棒材.经力学性能测试表明,当脱脂棉的质量分数为02%时,复合棒材的弯曲强度达1368 MPa,与纯壳聚糖棒材相比提高了48%.SEM表明,脱脂棉纤维与壳聚糖基体界面结合性能好,复合棒材在受到外力作用时,壳聚糖基体传递应力,而脱脂棉纤维可以有效承担外界应力的作用,从而使得微量的脱脂棉纤维有效地提高了壳聚糖棒材的弯曲强度,该材料有望用于临床骨折内固定.

关键词: 壳聚糖脱脂棉纤维复合材料    
Abstract:

Absorbent cotton fibers were dissolved in trifluoroacetic acid (TFA), and then precipitated in the chitosan solution. Cotton fibers were equably stably suspended in the viscous chitosan solution. Cotton fiber/chitosan composite rods with layer-by-layer structure were constructed via in-situ precipitation. Mechanical property tests showed that the bending strength of cotton fiber/chitosan composite rod reached 1368 MPa, which was increased by 48%, compared with the pure chitosan rod, when the content percentage of absorbent cotton in the composites was 02%. Scanning electron microscope (SEM) indicated that the interface between the cotton fiber and chitosan matrix was well connected. Chitosan was the continuous phase that could transfer stress, whereas cotton fiber could endure outside stress effectively. Thus, chitosan rod could be reinforced by a small amount of cotton fibers to suit internal fixation of bone fracture.

Key words: chitosan    absorbent cotton    fiber    composites
出版日期: 2009-08-01
:  O636.1  
基金资助:

国家自然科学基金资助项目(50333020, 50773070);国家“973”重点基础研究发展规划资助项目(2005CB623902);浙江省重大科技专项资助项目(2008C11087);浙江省科技计划资助项目(2006C33067).

通讯作者: 胡巧玲,女,教授.     E-mail: huql@zju.edu.cn
作者简介: 王征科(1981-),男,江苏淮安人,博士,博士后,从事生物医用高分子材料的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王征科
胡巧玲
吕佳

引用本文:

王征科, 胡巧玲, 吕佳, 等. 脱脂棉纤维增强壳聚糖棒材[J]. J4, 2009, 43(7): 1312-1315.

WANG Zheng-Ke, HU Qiao-Ling, LV Jia, et al. Chitosan rod reinforced with absorbent cotton fibers. J4, 2009, 43(7): 1312-1315.

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I7/1312

[1] 胡巧玲,钱秀珍,李保强,等.原位沉析法制备壳聚糖棒材的研究 [J].高等学校化学学报, 2003, 24(3): 528531.
HU Qiao-ling, QIAN Xiu-zhen, LI Bao-qiang, et al. Studies on chitosan rods prepared by in situ precipitation method [J]. Chemical Journal of Chinese Universities, 2003, 24(3): 528531.
[2] KUMAR M. A review of chitin and chitosan applications [J]. Reactive and Functional Polymers, 2000, 46 (1): 127.
[3] KHOR E, LIM LY. Implantable applications of chitin and chitosan [J]. Biomaterials, 2003, 24(13): 23392349.
[4] HUDA MS, DRZAL LT, MISRA M, et al. A study on biocomposites from recycled newspaper fiber and poly(lactic acid) [J]. Industrial and Engineering Chemistry Research, 2005, 44(15): 55935601.
[5] NISHINO T, MATSUDA I, HIRAO K. All-cellulose composite [J]. Macromolecules, 2004, 37(20): 76837687.
[6] BHARDWAJ R, MOHANTY AK, DRZAL LT, et al. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic [J]. Biomacromolecules, 2006, 7(6): 20442051.
[7] HU Q L, LI B Q, WANG M, et al. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization∶a potential material as internal fixation of bone fracture[J]. Biomaterials, 2004, 25: 779785.
[8] FAVIER V, CHANZY H, CAVAILLE JY. Polymer nanocomposites reinforced by cellulose whiskers [J].Macromolecules, 1995, 28(18): 63656367.
[9] 王征科, 吴海若, 胡巧玲, 等. 梯度渗透法组装仿木年轮结构壳聚糖棒材[J]. 浙江大学学报:工学版, 2006, 40(11): 18691872.
WANG Zheng-ke, WU Hai-ruo, HU Qiao-ling, et al. Chitosan rods with annual ring structure prepared via grade-pervasion precipitation[J]. Journal of Zhejiang University: Engineering Science, 2006, 40(11): 18691872.

[1] 栾丛丛, 姚鑫骅, 刘丞哲, 傅建中. 碳纤维-热塑性复合材料三维打印及其自监测[J]. 浙江大学学报(工学版), 2017, 51(9): 1808-1814.
[2] 胡亚元, 余启致, 张超杰, 钱镜林, 谢嘉祺. 纤维加筋淤泥固化土的邓肯-张模型[J]. 浙江大学学报(工学版), 2017, 51(8): 1500-1508.
[3] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[4] 王激扬, 马卫强, 胡志华, 万成霖. PE纤维掺量对水泥基复合材料力学性能的影响[J]. 浙江大学学报(工学版), 2017, 51(11): 2130-2135.
[5] 周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1671-1676.
[6] 王震,王景全,戚家南. 钢管混凝土组合桥墩变形能力计算模型[J]. 浙江大学学报(工学版), 2016, 50(5): 864-870.
[7] 刘肃肃,余音. 复材非线性及渐进损伤的态型近场动力学模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 993-1000.
[8] 倪楠楠, 温月芳, 贺德龙, 王程成, 益小苏, 许亚洪. 功能无纺布插层复合材料的结构阻尼性能[J]. 浙江大学学报(工学版), 2016, 50(2): 353-359.
[9] 陈艳,高尚君,于哲峰,汪海. 复合材料翼盒低速冲击分层阈值力模型[J]. 浙江大学学报(工学版), 2016, 50(1): 186-192.
[10] 李智宁, 韩同春, 豆红强, 邱子义. 螺旋土钉钻进成孔扭矩分析[J]. 浙江大学学报(工学版), 2015, 49(8): 1426-1433.
[11] 曹宇, 刘紫嫣. 大口径复合材料管水下铺设的安全性评估[J]. 浙江大学学报(工学版), 2015, 49(6): 1108-1115.
[12] 曹宇, 刘紫嫣. 大口径复合材料管水下铺设的安全性评估[J]. 浙江大学学报(工学版), 2015, 49(2): 3-4.
[13] 熊海贝, 李奔奔, 江佳斐. FRP约束混凝土圆柱应力-应变模型的适用性[J]. 浙江大学学报(工学版), 2015, 49(12): 2363-2375.
[14] 柯俊,史文库,钱琛,李国民,袁可. 复合材料板簧刚度的预测及匹配设计方法[J]. 浙江大学学报(工学版), 2015, 49(11): 2103-2110.
[15] 张诚成, 朱鸿鹄, 唐朝生, 施斌. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.