Please wait a minute...
J4
动力与电气工程     
基于特征根聚类的电力系统时滞稳定域研究
刘兆燕1,2,江全元1,徐立中1,曹一家1
(1.浙江大学 电气工程学院, 浙江 杭州 310027; 2.北京电力设计院, 北京 100055)
Stability regions of time-delayed power system based on clustering treatment of characteristic roots
LIU Zhao-yan1,2, JIANG Quan-yuan1, XU Li-zhong1, CAO Yi-jia1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2. Beijing Electric Power Design Institute, Beijing 100055, China
 全文: PDF 
摘要:

为了研究广域测量系统(WAMS)中的信号延迟对电力系统稳定性的影响,引入了一种分析时滞系统稳定性的直接法.该方法通过Rekasius变换消去特征方程中的指数项,解决了考虑时滞的超越方程的求解难题.对系统特征根进行了两步聚类处理,利用Routh判据求解系统特征方程的纯虚根,研究了特征根穿越虚轴的情况,得到了系统不稳定特征根个数在整个时滞空间内的分布.对装设晶闸管可控串补(TCSC)控制器的单机无穷大系统和四机两区域系统进行了时滞稳定域研究,结果表明,该方法计算过程简单,能够有效求解单时滞电力系统的时滞稳定域,最终得到了系统在时滞空间内的准确稳定域.对原系统进行的时域仿真结果验证了该方法的有效性.

关键词: 电力系统稳定性分析时滞聚类处理特征根    
Abstract:

A direct method for analyzing the stability of time-delayed systems was presented to study the effect of signal time delay in the wide area measurement system (WAMS) on power system stability. Rekasius transform was introduced in this method to deal with the transcendental terms in the characteristic equation and the transcendental equations could be solved effectively. Two steps of  clustering treatments were performed on the characteristic roots. Routh criterion was employed to get the pure imaginary characteristic roots. The crossing direction of the characteristic roots over the imaginary axis was studied and the number of unstable roots in the time delay space was obtained. The stability of the single machine infinite bus (SMIB) system with a TCSC controller and the 4-machine 2-area system were analyzed considering the feedback transmission delays. Results show that this method is simple and can effectively calculate the  stablility regions of time-delayed power systems with single delay. The complete stability regions of these two test systems were obtained through this direct method in the time delay space. The validity of this method was verified by the time domain simulation results.

Key words: power system    stability analysis    time delay    clustering treatment    characteristic root
出版日期: 2009-09-01
:  TM 712  
基金资助:

国家自然科学基金资助项目(50507018);国家自然科学基金重点资助项目(50595414)

通讯作者: 江全元,男,副教授.     E-mail: jqy@zju.edu.cn
作者简介: 刘兆燕(1982-),男,山东菏泽人,博士,从事电力系统稳定与控制方面的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘兆燕
江全元
徐立中

引用本文:

刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 10.3785/j.issn.1008-973X.2009..

LIU Zhao-Yan, JIANG Quan-Yuan, XU Li-Zhong,et al. Stability regions of time-delayed power system based on clustering treatment of characteristic roots. J4, 10.3785/j.issn.1008-973X.2009..

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I8/1473

[1] NI H, HEYDT G T, MILI L. Power system stability agents using robust wide area control [J]. IEEE Transactions on Power Systems, 2002, 17(4): 1123-1131.
[2] KAMWA I, GRONDIN R, HEBERT Y. Wide-area measurement based stabilizing control of large power systems — a decentralized/hierarchical approach [J]. IEEE Transactions on Power Systems, 2001, 16(1): 136-153.
[3] 江全元,邹振宇,曹一家,等. 考虑时滞影响的电力系统稳定分析和广域控制研究进展[J]. 电力系统自动化, 2005, 29(3): 1-7.
JIANG Quan-yuan, ZOU Zhen-yu, CAO Yi-jia, et al. Overview of power system stability analysis and wide- area control in consideration of time delay [J]. Automation of Electric Power Systems, 2005, 29(3): 1-7.
[4] 江全元,白碧蓉,邹振宇,等. 计及广域测量系统时滞影响的TCSC控制器设计[J]. 电力系统自动化, 2004, 28(20): 21-25.
JIANG Quan-yuan, BAI Bi-rong, ZOU Zhen-yu, et al. TCSC controller design with time delay in wide-area measuring system taken into account [J]. Automation of Electric Power Systems, 2004, 28(20): 21-25.
[5] NADUVATHUPARAMBIL B, VALENTI M C, FELIACHI A. Communication delays in wide area measurement systems [C]∥ Proceedings of the 34th Southeastern Symposium on System Theory. Alabama: IEEE, 2002, 1: 118-122.
[6] AARON F, DAN I, NOUREDINE H. Delayed-input wide-area stability control with synchronized phasor measurements and linear matrix inequalities [C]∥ Proceedings of the IEEE PES Summer Meeting. Seattle: IEEE, 2000, 2: 1009-1014.
[7] WU H X, NI H, HEYDT G T. The impact of time delay on robust control design in power systems [C]∥ Proceedings of IEEE Power Engineering Society Winter Meeting. Tempe: IEEE, 2002: 1511-1516.
[8] CHAUDHURI B, MAJUMDER R, BIKASH C P. Wide-area measurement-based stabilizing control of power system considering signal transmission delay [J]. IEEE Transactions on Power Systems, 2004, 19(4): 1971-1979.
[9] CARULLO S P, NWANKPA C O. Experimental validation of a model for an information-embedded power system [J]. IEEE Transactions on Power Delivery, 2005, 20(3): 1853-1863.
[10] OLGAC N, SIPAHI R. An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems [J]. IEEE Transactions on Automatic Control, 2002, 47(5): 793-797.
[11] OLGAC N, SIPAHI R. The direct method for stability analysis of time delayed LTI systems [C]∥ Proceedings of the American Control Conference. Denver: [s.n.], 2003: 869-874.
[12] OLGAC N, SIPAHI R. A practical method for analyzing the stability of neutral type LTI-time delayed system [J]. Automatica, 2004, 40(5): 847-853.
[13] OLGAC N, SIPAHI R. The cluster treatment of characteristic roots and the neutral type time-delayed systems [J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 127(1): 88-97.
[14] KOLMANOVSKI V B, NOSOV V R. Stability of functional differential equations [M]. London: Academic Press, 1989.
[15] REKASIUS Z V. A stability test for systems with delays [C]∥ Proceedings of the Joint Automatic Control Conference. San Francisco: [s.n.], 1980.
[16] HALE J K, SJOERD M, VERDUYN L. An introduction to functional differential equations [M]. New York: Springer-Verlag, 1993.
[17] 张鹏翔,江全元,曹一家,等. 基于多目标进化算法的TCSC非线性控制器设计[J]. 电力系统自动化, 2003, 27(13): 40-44.
ZHANG Peng-xiang, JIANG Quan-yuan, CAO Yi-jia, et al. Design of TCSC nonlinear controller based on multi-objective genetic algorithm [J]. Automation of Electric Power Systems, 2003, 27(13): 40-44.
[18] 江全元,张鹏翔,曹一家,等. 计及反馈信号时滞影响的广域FACTS阻尼控制[J]. 中国电机工程学报, 2006, 26(7): 82-88.
JIANG Quan-yuan, ZHANG Peng-xiang, CAO Yi-jia, et al. Wide-area FACTS damping control in consideration of feedback signals’ time delays [J]. Proceedings of the CSEE, 2006, 26(7): 82-88.

[1] 卢泽汉,兰洲,吴晶莹,汪震,辛焕海. 基于同步控制的微网多工况小信号稳定分析[J]. 浙江大学学报(工学版), 2016, 50(3): 536-544.
[2] 卢泽汉,兰洲,吴晶莹,汪震,辛焕海. 基于同步控制的微网多工况小信号稳定分析[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[3] 孙文达, 李平, 方舟. 无人直升机动态逆时滞不确定鲁棒最优控制[J]. 浙江大学学报(工学版), 2015, 49(7): 1326-1334.
[4] 王婷, 陈斌, 姚文熙, 吕征宇. 异步电机无速度传感器控制的Holtz型磁链观测器性能分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1690-1695.
[5] 王冠楠,孙黎滢,甘德强,王彬彬,辛焕海. 电力系统稳定器设计的广义相位补偿法[J]. 浙江大学学报(工学版), 2014, 48(7): 1295-1303.
[6] 吕文韬,沈忱,江道灼,桂帆,范宇,吴兆麟. 具有电容限压功能的限流式统一潮流控制器[J]. 浙江大学学报(工学版), 2014, 48(5): 877-881.
[7] 杨波, 钟彦儒, 曾光. 阶梯波链式静止同步补偿器电容电压平衡控制[J]. J4, 2014, 48(4): 600-609.
[8] 赵权利, 孙红月, 尚岳全, 王智磊. 承压水孔压的时空变化对边坡稳定性影响[J]. J4, 2013, 47(8): 1366-1372.
[9] 毛维杰,张媛媛. 具有区间时变时滞的中立型系统稳定性分析[J]. J4, 2012, 46(5): 848-852.
[10] 阎博,江道灼,甘德强,藏玉清. 基于反馈线性化H∞方法的UPFC非线性鲁棒控制器[J]. J4, 2012, 46(11): 1975-1980.
[11] 王康, 符杨, 辛焕海, 王冠楠. 基于新型Back-stepping方法的电力系统
励磁控制器设计
[J]. J4, 2011, 45(4): 747-753.
[12] 冯斌, 龚国芳, 杨华勇. 大流量液压系统的油温控制[J]. J4, 2011, 45(4): 741-746.
[13] 陈丽莉,黄民翔,甘德强. 基于改进离散粒子群算法的限流措施优化配置[J]. J4, 2011, 45(3): 510-514.
[14] 王俊宏, 薛安克. 测量值量化的时滞系统的输出反馈控制[J]. J4, 2010, 44(7): 1418-1422.
[15] 潘海鹏, 吕勇松. 时滞系统的模糊神经网络补偿控制[J]. J4, 2010, 44(7): 1343-1347.