Please wait a minute...
J4
力学     
模拟颗粒布朗运动的格子Boltzmann模型
聂德明1,2,林建忠1,2
(1.浙江大学 力学系,浙江 杭州 310027; 2.中国计量学院,计量测试工程学院,浙江 杭州 310018)
Lattice Boltzmann model for particle Brownian motion
 NIE De-Meng1,2, LIN Jian-Zhong1,2
1. Department of Mechanics, Zhejiang University, Hangzhou 310027, China;
2. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
 全文: PDF(590 KB)  
摘要:

通过在格子Boltzmann方法的迭代格式中附加描述分子热运动涨落的分布函数,建立了描述颗粒布朗运动的涨落格子Boltzmann模型,给出了分布函数满足的条件以及在D2Q9格子模型下的具体表达形式.通过ChapmanEnskog展开推导,得到了考虑分子热运动涨落的宏观流体动力学方程.在此基础上,对单颗粒在流场中的布朗运动进行了数值模拟,得到了颗粒运动的均方速度及速度、角速度时间自相关函数.结果表明,均方速度满足能量均分定理,说明颗粒最终达到热平衡;颗粒速度、角速度时间自相关函数符合理论预测的t-1、t-2衰减规律.数值结果证明了所建立模型的正确性,为采用格子Boltzmann方法模拟颗粒的布朗运动提供了有效的方法.

关键词: 格子Boltzmann方法颗粒布朗运动    
Abstract:

A fluctuating lattice Boltzmann model for particle Brownian motion was established by incorporating a stochastic term into the lattice Boltzmann equation, which represents the thermally-induced fluctuations in the stress tensor. The conditions for the stochastic term were derived and the expressions of the stochastic term for the D2Q9 lattice model were also presented. The fluctuating hydrodynamic equations were derived from the lattice Boltzmann equation through Chapman-Enskog expansion. The Brownian motion of a single circular particle was numerically investigated by the newly developed lattice Boltzmann model. Numerical results including particle mean-square velocity, velocity autocorrelation function and angular velocity autocorrelation function were presented. The energy equipartition theorem was reproduced by the results of mean-square velocity, which indicated that the particle was in thermal equilibrium. The results showed that the velocity autocorrelation function and the angular velocity autocorrelation function decayed as a power law of t-1 and t-2 respectively, as theoretically stated. Numerical results showed the accuracy and robustness of the present model, which was proved to be an effective numerical method for the particle Brownian motion.

Key words: lattice Boltzmann method (LBM)    particles    Brownian motion
出版日期: 2009-09-01
:  O 359  
基金资助:

国家自然科学基金重点资助项目(2005CCA06900)

通讯作者: 林建忠,男,教授.     E-mail: jzlin@sfp.zju.edu.cn
作者简介: 聂德明(1979-),男,福建三明人,博士,从事多相流体力学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
聂德明
林建忠

引用本文:

聂德明,林建忠. 模拟颗粒布朗运动的格子Boltzmann模型[J]. J4, 10.3785/j.issn.1008-973X.2009..

NIE De-Meng, LIN Jian-Zhong. Lattice Boltzmann model for particle Brownian motion. J4, 10.3785/j.issn.1008-973X.2009..

链接本文:

http://www.zjujournals.com/xueshu/eng/CN/10.3785/j.issn.1008-973X.2009.        http://www.zjujournals.com/xueshu/eng/CN/Y2009/V43/I8/1438

[1] 宣益民,李强,姚正平. 纳米流体的格子Boltzmann模拟[J]. 中国科学(E辑:技术科学), 2004, 34(3): 280-287.
XUAN Yi-min, LI Qiang, YAO Zheng-ping. Numerical simulation of nano-fluids using lattice Boltzmann method [J]. Science in China Series (E: Technological Sciences), 2004, 34(3): 280-287.
[2] BRADY J F, BOSSIS G. Stokesian dynamics [J]. Annual Review of Fluid Mechanics, 1988, 20: 111-157.
[3] BRADY J F, BOSSIS G. Self-diffusion of Brownian particles in concentrated suspensions under shear [J]. Journal of Chemical Physics, 1987, 87(9): 5437-5448.
[4] FOSS D R, BRADY J F. Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation [J]. Journal of Fluid Mechanics, 2000, 407: 167-200.
[5] ERMAK D L, MCCAMMON J A. Brownian dynamics with hydrodynamic interactions [J]. Journal of Chemical Physics, 1978, 69(4): 1352-1360.
[6] LANDAU L D, LIFSHITZ E M. Fluid mechanics [M]. London: Pergamon Press, 1959.
[7] HAUGE E H, MARTIN-LOF A. Fluctuating hydrodynamics and Brownian motion [J]. Journal of Statistical Physics, 1973, 7(3): 259-281.
[8] SHARMA N, PATANKAR N A. Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations [J]. Journal of Computational Physics, 2004, 201(2): 466-486.
[9] CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364.
[10] LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1: Theoretical foundation [J]. Journal of Fluid Mechanics, 1994, 271: 285309.
[11] 郭照立,郑楚光,李青,等. 流体动力学的格子Boltzmann方法[M]. 武汉:湖北科学技术出版社, 2002: 49-50.
[12] AIDUN C K, LU Y, DING E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation [J]. Journal of Fluid Mechanics, 1998, 373: 287-311.
[13] 熊吟涛. 统计物理学[M]. 北京:人民教育出版社, 1981

[1] 袁瑞峰, 孙志坚, 杨继虎, 杨明, 胡亚才, 俞自涛. 氟塑钢复合管冲蚀磨损性能的试验研究[J]. 浙江大学学报(工学版), 2018, 52(1): 43-49.
[2] 许希, 徐甸, 严佩, 朱唯卓, 郑成航, 高翔, 骆仲泱, 倪明江, 岑可法. 高温线板式静电除尘器颗粒捕集[J]. 浙江大学学报(工学版), 2017, 51(3): 487-493.
[3] 吕俊翔, 刘军恒, 孙平, 苏雯博, 孟建, 万垚峰. 荷电反应器状态对柴油机颗粒荷质比的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2414-2419.
[4] 王玉梅, 孙平, 冯浩杰, 刘军恒, 嵇乾. 柴油机燃用铁基FBC燃油的微粒排放特性[J]. 浙江大学学报(工学版), 2017, 51(10): 1981-1987.
[5] 张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1516-1520.
[6] 田付有,黄连锋,范利武,俞自涛,胡亚才. 双粒度混合烧结矿颗粒填充床压降实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2077-2086.
[7] 韩旭,毛飞燕,黄群星,池涌,严建华. 储运油泥中非油相组分对表观黏度的影响分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2064-2068.
[8] 金炜枫,张力友,陈小亮,程泽海. 双向激振液化的离散颗粒-流体耦合模拟方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2135-2142.
[9] 沙东辉,骆仲泱,鲁梦诗,江建平,方梦祥,周栋,陈浩. 带正电颗粒电凝并的显微可视化研究[J]. 浙江大学学报(工学版), 2016, 50(1): 93-101.
[10] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[11] 沈欣军,王仕龙,韩平,郑钦臻,曾宇翾,闫克平. 电除尘器内亚微米细颗粒物动态的可视化测试[J]. 浙江大学学报(工学版), 2015, 49(5): 985-992.
[12] 张富翁, 王立, 刘传平. 双组分颗粒振动体系中的能量传递与耗散[J]. 浙江大学学报(工学版), 2015, 49(3): 571-577.
[13] 谭骏华, 罗坤, 樊建人. 软球模型在颗粒流全尺度模拟中的验证和分析[J]. 浙江大学学报(工学版), 2015, 49(2): 344-350.
[14] 江建平, 骆仲泱, 陈浩, 周栋, 沙东辉, 方梦祥, 岑可法. 2种常用颗粒物粒径表征方法的对比[J]. 浙江大学学报(工学版), 2015, 49(12): 2326-2332.
[15] 方奕栋, 楼狄明, 胡志远, 谭丕强. 连续再生颗粒捕集器对生物柴油发动机颗粒及NOx排放的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1836-1841.