浙江大学学报(工学版), 2019, 53(11): 2146-2153 doi: 10.3785/j.issn.1008-973X.2019.11.012

计算机技术与控制工程

周期拒绝服务干扰攻击下信息物理系统的H控制

汪慕峰,, 胥布工,, 陈立定

H control for cyber-physical system under periodic denial-of-service jamming attack

WANG Mu-feng,, XU Bu-gong,, CHEN Li-ding

通讯作者: 胥布工,男,教授. orcid.org/0000-0002-7241-8639. E-mail: aubgxu@scut.edu.cn

收稿日期: 2018-09-4  

Received: 2018-09-4  

作者简介 About authors

汪慕峰(1990—),男,博士生,从事CPS安全问题研究.orcid.org/0000-0001-5706-8960.E-mail:201610102003@mail.scut.edu.cn , E-mail:201610102003@mail.scut.edu.cn

摘要

针对恶意拒绝服务(DoS)干扰攻击对信息物理系统(CPS)正常运行的影响,研究DoS干扰攻击下某类CPS的H控制问题. 能量受限的DoS干扰者采用周期型攻击策略攻击CPS中的无线信道,迫使无线信道的通信质量下降;CPS的无线信道存在由固有因素引起的随机数据包丢失,且由于恶意网络攻击具有突发性和隐蔽性的特点,DoS干扰者的攻击策略是未知的. 将恶意DoS干扰攻击和无线信道固有因素对信道通信质量的影响表示为统一形式,并通过建立攻击容忍机制和基于观测器的控制策略,得到保证受攻击CPS在未知攻击者具体攻击策略的情况下能够实现指数均方稳定且满足预期H性能指标的充分条件,将H控制器的设计问题转化为凸优化问题的求解. 利用数值仿真验证所提出控制策略的正确性和有效性.

关键词: 信息物理系统 ; 拒绝服务干扰攻击 ; 能量受限 ; 周期攻击策略 ; 数据包丢失 ; H控制

Abstract

The H control problem of a class of cyber-physical system (CPS) under malicious denial-of-service (DoS) jamming attack was researched, aiming at the influence of the DoS jamming attack on the CPS. An energy constrained DoS jammer with periodic attack strategy attacks the wireless channel in the CPS, decreasing the communication quality. Random packet dropouts caused by inherent factors exist in the wireless channel, and the DoS jammer’s attack strategy is unknown due to that DoS jamming attacks have the characteristics of suddenness and concealment. By expressing the influence of malicious DoS jamming attacks and the inherent factors in the wireless channel into a unified form and establishing an attack tolerance mechanism and an observer-based control strategy, sufficient conditions were obtained to guarantee the exponential mean square stability of the attacked CPS without knowing DoS jammer’s concrete attack strategy, and the prescribed H performance index can be achieved simultaneously. The design of the H controller is transformed into the solving of a convex optimization problem. Numerical simulations were used to demonstrate the correctness and effectiveness of the control strategy.

Keywords: cyber-physical system ; denial-of-service jamming attack ; energy constrained ; periodic attack strategy ; packet dropout ; H control

PDF (1027KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

汪慕峰, 胥布工, 陈立定. 周期拒绝服务干扰攻击下信息物理系统的H控制 . 浙江大学学报(工学版)[J], 2019, 53(11): 2146-2153 doi:10.3785/j.issn.1008-973X.2019.11.012

WANG Mu-feng, XU Bu-gong, CHEN Li-ding. H control for cyber-physical system under periodic denial-of-service jamming attack . Journal of Zhejiang University(Engineering Science)[J], 2019, 53(11): 2146-2153 doi:10.3785/j.issn.1008-973X.2019.11.012

近年来,随着智能控制技术、计算机技术和通信网络技术的不断融合和飞速发展,基于通信技术、计算机技术和控制技术(communication,computer,control,3C)的信息物理系统(cyber-physical system,CPS)应运而生[1],引起各国政府、学术界和商业界的高度重视[2]. 作为新型智能系统,CPS紧密融合物理空间和信息空间,广泛应用于工业自动化系统[3]、远程医疗[4]、智能电网[5]、智能交通[6]、航空航天[7]等大型基础设施.

通信网络,特别是更开放、共享的通信方式在CPS中的应用大大降低了系统运行和维护所需的人力、物力投入,提高了工作效率和经济效益,但也增加了系统自身的复杂度和对外界干扰的敏感度. 近年来,在全球范围内发生了多起针对CPS的恶意网络攻击事件,如2011年发生在伊朗的“震网”病毒入侵布尔什核电站[8]、2012年入侵中东地区石油工业控制系统的“火焰”病毒[9]和2016年入侵乌克兰敖德萨国际机场及基辅地铁支付系统的“坏兔子”[10],均造成了严重的社会危害和经济损失. 基于CPS的重要基础设施遭到恶意网络攻击,将直接威胁人们的正常生产生活,造成严重的后果[11]. 因此,研究并解决相关恶意网络攻击下CPS的安全问题具有重要的理论价值和应用价值.

目前,引起CPS安全问题的恶意网络攻击主要有拒绝服务(denial-of-service,DoS)攻击、错误数据注入攻击、数据重放攻击和虫洞攻击[12-14],其中DoS攻击作为最常见的攻击方式得到了广泛研究. Zhang等[15]针对某类CPS中远程估计器的估计性能,研究了能量受限的DoS干扰攻击者的最优攻击调度. 文献[16]提出能量受限的周期型DoS攻击模型,研究该种DoS攻击在某类无线网络化控制系统中的最优攻击策略. Foroush等[17]提出具有固定周期的能量受限DoS攻击模型,假设攻击者部分信息已知,实现了DoS攻击下的闭环网络系统稳定. De Persis等[18]提出能量受限的周期性DoS攻击模型,研究在DoS攻击下网络化控制系统的输入-状态稳定,在该模型中可以通过参数设置表示DoS攻击者的能量受限、周期性、随机性等特性. Ding等[19]利用信道的信噪比(signal to noise ratio,SNR)与误码率(symbol error ratio,SER)之间的关系,基于信号与干扰加噪声比(signal to interference and noise ratio,SINR)描述DoS攻击对信道通信质量的影响,建立能量受限的DoS干扰攻击模型;基于该模型,文献[20]研究DoS攻击下远程估计的防御策略,文献[21]考虑传感器和攻击者均能量受限的情况,研究传感器发送能量与攻击能量的博弈问题.

另一方面,除恶意网络攻击外,无线信道的固有因素,如信道衰落,也会引起数据包的随机丢失,造成系统性能下降,甚至不稳定[22-23]. 目前,主要利用3种方式来模拟信道的固有数据包丢失:将丢掉的数据包用0代替[24]、建模为服从Bernoulli分布的随机变量[25-26]和建模为马尔科夫跳变过程[27].

在已有的针对DoS攻击下的CPS安全问题的研究中,考虑无线信道固有随机数据包丢失的研究较少,且未有研究考虑到DoS攻击下CPS的H干扰抑制性能. 此外,由于恶意网络攻击的突发性和隐蔽性,系统在遭受攻击时并不能及时检测到攻击者的具体攻击策略. 因此,在未知攻击者具体攻击策略的情况下依然保证系统的正常运行至关重要. 本研究针对基于SINR的DoS干扰者[19]能量受限的特点,采用具有固定周期且在攻击期对无线信道发动连续攻击的周期型攻击策略,攻击目的是降低无线信道的通信质量;针对DoS干扰者攻击策略未知和无线信道存在固有数据包丢失的情况,建立攻击容忍机制,将周期DoS干扰攻击和固有因素对无线信道通信质量的影响表示为统一形式,并采用基于观测器的控制策略,得到保证系统指数均方稳定且满足相应H性能指标的充分条件. 利用数值仿真验证本研究所提出的控制器的正确性和有效性.

1. 问题建立

图1所示为DoS干扰攻击下某类CPS,其中传感器、控制器和执行器均为时间驱动,控制器中含有观测器和缓存器;传感器与控制器之间是加性高斯白噪声无线信道[19],其他为可靠的有线信道. 无线信道遭受DoS干扰攻击,并且DoS干扰者的攻击策略是未知的.

图 1

图 1   DoS干扰攻击下某类CPS

Fig.1   A class of CPS under DoS jamming attack


由于当前无线通信技术的限制,即使无线信道未遭受恶意网络攻击,信道中的固有因素,如信道噪声、信道衰落,仍会造成在无线信道中传输的数据包随机丢失[22-23]. 可用SNR与SER之间的关系来衡量无线信道的通信质量[19, 28]

$ {\rm{SNR}} = {{{p_{\rm{s}}}} / {{\sigma ^2}}}, $

$ {\rm{SER}} = 2Q\sqrt {\xi {\rm{SNR}}} , $

$ Q(x) = {\left( {2{\text{π}} } \right)^{ - 1/2}}\int_x^\infty {\exp\;( - {{{\rho ^2}} /2}){\rm d}\rho }. $

式中: ${p_{\rm{s}}}$为信号的传输能量, ${\sigma ^2}$为加性高斯白噪声的能量, $\xi > 0$为网络参数.

1.1. 周期DoS干扰攻击

DoS干扰攻击发生在无线领域,通过干扰无线信道的正常通信来降低信道的传输质量和数据包传输成功率[29-31]. 与无线信道固有因素引起的随机数据包丢失相比,DoS干扰攻击是DoS干扰者有目的、有计划发动的,且造成的影响远大于固有因素的影响. 对于能量受限且无须感知无线信道的DoS干扰者,能量效率和隐蔽性是其选择攻击策略的主要标准,采用休眠期和攻击期交替出现,且休眠期和攻击期的持续时间可以为固定值或随机值的随机攻击策略,是合理的选择[29]. 假设DoS干扰者的休眠期和攻击期的持续时间均为固定值,可将随机攻击策略表示为固定周期攻击策略,即干扰者的一个工作周期由休眠期和攻击期组成. 令 ${\alpha _k}$表示一个工作周期的具体情况,其中 ${\alpha _k} = 0$表示休眠期, ${\alpha _k} = 1$表示攻击期. 攻击者在休眠期补充能量,在攻击期发动连续攻击. 设 $T$$T \in {{\bf{Z}}^ + }$)为一个工作周期的持续时间, ${t_{\rm{s}}}$${t_{\rm{s}}} \in {{\bf{Z}}^ + }$${t_{\rm{s}}} < T$)为休眠期持续时间,其中 ${{\bf{Z}}^ + }$为正整数集. 攻击者的第 $n$个( $n \in {{\bf{Z}}^ + }$)工作周期如图2所示,表达式为

图 2

图 2   DoS干扰者的工作周期示意图

Fig.2   Schematic diagram of working cycle of DoS jammer


$ {\alpha _k} = \left\{ {\begin{aligned} & {0,\;k \in [(n - 1)T + 1,(n - 1)T + {t_{\rm{s}}}],}\\ & {1,\;k \in [(n - 1)T + {t_{\rm{s}}} + 1,nT].} \end{aligned}} \right. $

根据DoS干扰者的周期攻击策略(见式(4)),当其处于休眠期时,仅须考虑无线信道固有因素造成的随机数据包丢失,SNR、SER如式(1)、(2)所示;当其处于攻击期时,DoS干扰者根据自身拥有的总能量 $E$选择能量 ${p_{{\rm{a}},k}} $攻击无线信道, ${p_{{\rm{a}},k}} \in ({p_{\rm{s}}},E)$,此时信道的SNR变为SINR,SINR与SER之间的关系[19-20, 28]可以表示为

${\rm{SINR}} = {{{p_{\rm{s}}}} / {({p_{{\rm{a}},k}} + {\sigma ^2})}},$

${\rm{SER}} = 2Q\sqrt {\xi {\rm{SINR}}} .$

结合式(1)~(6),将周期DoS干扰攻击和固有因素对无线信道通信质量的影响表示为统一形式:

${\rm{SER}} = 2Q\sqrt {{{\xi {p_{\rm{s}}}} / {({\alpha _k}{p_{{\rm{a}},k}} + {\sigma ^2})}}} = \left\{ \begin{aligned} & 2Q\sqrt {\xi {\rm{SNR}}} ,\;{\alpha _k} = 0,\\ & 2Q\sqrt {\xi {\rm{SINR}}} ,\;{\alpha _k} = 1. \end{aligned} \right.$

与文献[20]、[21]相比,式(7)能够将无线信道的固有数据包丢失和周期DoS干扰攻击对无线信道的影响统一表示; ${\alpha _k}$在体现攻击者周期性的同时,增加了式(7)的复杂性.

${\;\beta _{{\alpha _k},k}} \in \{ 0,1\} $表示在网络攻击和信道固有因素的影响下控制器能否成功收到数据包:

$ {\beta _{{\alpha _k},k}} = \left\{ {\begin{aligned} &{1,}\quad{\text{传输成功}},\\ &{0,}\quad{\text{其他}}. \end{aligned}} \right. $

DoS干扰者在攻击期的每个时刻攻击无线信道,数据包传输成功率服从Bernoulli分布[15, 32-33]. 同时,加性高斯白噪声信道的随机差错可用常数概率描述,因此在攻击者休眠期内的数据包传输成功率服从Bernoulli分布[22]. 结合式(7)、(8),可以得到

$\left. {\begin{aligned} & {\Pr \;[{\beta _{{\alpha _k},k}} = 1] = {{\bar \beta }_{{\alpha _k},k}} = 1 - {\rm{SER}},} \\ & {\Pr \;[{\beta _{{\alpha _k},k}} = 0] = 1 - {{\bar \beta }_{{\alpha _k},k}} = {\rm{SER}}.} \end{aligned}} \right\}$

式中: $\;{\bar \beta _{{\alpha _k},k}} \in [0,1)$${\alpha _k} \in \{ 0,1\} $为已知常数,Pr $[\cdot ]$为概率. $\;{\beta _{{\alpha _k},k}}$${\alpha _k}$相关,表示在周期DoS干扰攻击下控制器的数据包接收情况. 与已有的仅考虑信道固有随机丢包的研究[22, 25-26]相比更加复杂. 此外,在无攻击情况下无线信道的数据包传输成功率会比有攻击情况下的高[34],即 $\;{\bar \beta _{0,k}} > {\bar \beta _{1,k}}$. 另外,式(9)包含一种特殊情况,即无DoS干扰攻击,此时仅须考虑无线信道固有的数据包丢失,有 $\;{\bar \beta _{0,k}} = {\bar \beta _{1,k}}$. 该类问题已经得到深入研究[22-27].

1.2. 系统模型

考虑物理系统为如下形式:

$\left. {\begin{array}{*{20}{l}} {{{{x}}_{k + 1}} = {{A}}{{{x}}_k} + {{B}}{{{u}}_k} + {{D}}{{{\omega}} _k},} \\ \qquad\quad {{{{y}}_k} = {{{C}}_1}{{{x}}_k},} \\ \qquad\quad {{{{z}}_k} = {{{C}}_2}{{{x}}_k}.} \end{array}} \right\}$

式中: ${{{x}}_k} \in {{\bf{R}}^n}$为系统状态; ${{{u}}_k} \in {{\bf{R}}^m}$为控制输入; ${{{y}}_k} \in {{\bf{R}}^p}$为测量输出; ${{{z}}_k} \in {{\bf{R}}^r}$为系统受控输出; ${{{\omega}} _k} \in {{\bf{R}}^q}$为外部扰动,且 ${{{\omega}} _k} \in {l_2}[0,\infty )$${{A}}$${{B}}$${{{C}}_1}$${{{C}}_2}$${{D}}$为已知常数矩阵.

由于网络攻击的突发性和隐蔽性,假设CPS未知DoS干扰者的攻击策略. 利用控制器中的缓存器建立攻击容忍机制,即当传感器在 $k$时刻发送的数据包 ${{{y}}_k}$成功地传输到控制器时,控制器中的缓存器更新数据并计算出相应的控制信号;否则,使用缓存器中存储的数据 ${{\bar{ y}}_{k - 1}}$代替 ${{{y}}_k}$. 结合式(9),攻击容忍机制的动态过程可以表示为

${{\bar{ y}}_k} = {\beta _{{\alpha _k},k}}{{{y}}_k} + (1 - {\beta _{{\alpha _k},k}}){{\bar{ y}}_{k - 1}}.$

采用基于观测器的控制策略,其中观测器和控制器的表达式分别为

$\left. \begin{aligned} & {{{\hat{ x}}}_{k + 1}} = {{A}}{{{\hat{ x}}}_k} + {{B}}{{{u}}_k} + {{L}}({{{\bar{ y}}}_k} - {{{\hat{\bar { y}}}}_k}), \\ & {{{\hat{\bar { y}}}}_k} = {\beta _{{\alpha _k},k}}{{{\hat{ y}}}_k} + (1 - {\beta _{{\alpha _k},k}}){{{\bar{ y}}}_{k - 1}}, \end{aligned} \right\}$

${{{u}}_k} = {{K}}{{\hat{ x}}_k}.$

式中: ${{\hat{ x}}_{{k}}} \in {{\bf{R}}^n}$为系统状态估计, ${{\hat{\bar { y}}}_k} \in {{\bf{R}}^p}$为估计器输出, ${{K}} \in {{\bf{R}}^{m \times n}}$为控制器增益矩阵, ${{L}} \in {{\bf{R}}^{n \times p}}$为观测器增益矩阵.

令估计误差为

${{{e}}_k} = {{{x}}_k} - {{\hat{ x}}_k}.$

结合式(10)~(14),可以得到DoS干扰攻击下CPS的闭环系统表达式为

$\left. \begin{aligned} & \qquad{{{x}}_{k + 1}} = ({{A}} + {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k} + {{D}}{{{\omega}} _k}, \\ & {{{e}}_{k + 1}} \!=\! ({{A}}\! - \!{{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k} \!- \!({\beta _{{\alpha _k},k}}\! -\! {{\bar \beta }_{{\alpha _k},k}}){{L}}{{{C}}_1}{{{e}}_k}\! +\! {{D}}{{{\omega}} _k}. \end{aligned} \right\}\!\!\!\!\!$

${{{\eta }}_k} = {\left[ {{{x}}_k^{\rm{T}},{{e}}_k^{\rm{T}}} \right]^{\rm{T}}}$,则式(15)可以表示为

${{{\eta }}_{k + 1}} = ({{{A}}_1} + {{{A}}_2}){{{\eta }}_k} + {\bar{ D}}{{{\omega}} _k}.$

式中:

${{{A}}_1} = \left[ {\begin{array}{*{20}{c}} {{{A}} + {{BK}}}&{ - {{BK}}} \\ {\bf 0}&{{{A}} - {{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}} \end{array}} \right]$

假设1.  ${{B}}$为列满秩矩阵, ${\rm{rank}}\;({{B}}) = m$. 闭环系统(式(15))是随机参数系统,下面介绍证明所需的引理及指数均方稳定的概念.

引理1[35]. 令 $V({{{\eta }}_k})$为Lyapunov函数. 如果存在实数 $\lambda \geqslant 0$$\mu > 0$$\nu > 0$$0 < \varphi < 1$满足

$\left. \begin{split} & \qquad \mu {\left\| {{{{\eta }}_k}} \right\|^2} \leqslant V({{{\eta }}_k}) \leqslant \nu {\left\| {{{{\eta }}_k}} \right\|^2}, \\ & { E}\{ V({{{\eta }}_{k + 1}})|{{{\eta }}_k}\} - V({{{\eta }}_k}) \leqslant \lambda - \varphi V({{{\eta }}_k}). \end{split} \right\}$

${E}\left\{ {\left\| {{{{\eta }}_k}} \right\|^2}\right\} \leqslant \nu {\left\| {{{{\eta }}_k}} \right\|^2}{(1 - \varphi )^k}/ \mu + {\lambda / {(\mu \varphi )}}.$

式中: ${ E}\left\{ \cdot \right\}$为数学期望.

引理2[35]. 对于列满秩矩阵 ${{B}}$,有奇异值分解(singular value decomposition,SVD)如下:

$ {{B}} = {{{U}}^{\rm{T}}}{\left[ {{{\varSigma }},{\bf 0}} \right]^{\rm{T}}}{{{V}}^{\rm{T}}}. $

式中: ${{U}} = {\left[ {{{U}}_1^{\rm{T}},{{U}}_2^{\rm{T}}} \right]^{\rm{T}}}$${{V}}$为正交矩阵; ${{\varSigma }} = {\rm{diag}}\;[ {\varpi _1}, $ ${\varpi _2}, \cdots ,{\varpi _m}] $,其中 ${\varpi _i}$为矩阵 ${{B}}$的非零奇异值.

引理3[35]. 对于列满秩矩阵 ${{B}}$,如果存在正定矩阵 ${{{P}}_1} \in {{\bf{R}}^{m \times m}}$${{{P}}_2} \in {{\bf{R}}^{(n - m) \times (n - m)}}$使得矩阵 ${{P}}$的表达式如下:

${{P}} = {{{U}}^{\rm{T}}}{\rm{diag}}\;\left[ {{{{P}}_1},{{{P}}_2}} \right]{{U}} = {{U}}_1^{\rm{T}}{{{P}}_1}{{{U}}_1} + {{U}}_2^{\rm{T}}{{{P}}_2}{{{U}}_2},$

则存在非奇异矩阵 ${\bar{ P}}$满足 ${{PB}} = {{B\bar P}}$.

定义1. 考虑CPS遭受未知攻击策略的DoS干扰攻击,采用基于观测器的控制策略(式(12)、(13)). 如果 ${{{\omega}} _k} ={\bf 0}$,且存在常数 $\epsilon > 0$$\tau \in (0,1)$满足

${E}\{ {\left\| {{{{\eta }}_k}} \right\|^2}\} \leqslant \epsilon {\tau ^k}{E}\{ {\left\| {{{{\eta }}_0}} \right\|^2}\} ;\; {{{\eta }}_0} \in {{\bf{R}}^n},k \in {{\bf{Z}}^ + }.$

则闭环系统(式(15))指数均方稳定.

结合定义1可知,本研究的目的为设计控制策略使得闭环系统(式(15))同时满足:

1)当 ${{{\omega }}_k} = 0$时,闭环系统指数均方稳定;

2)给定 $\gamma > 0$,对任意的非零 ${{{\omega}} _k}$,闭环系统的受控输出 ${{{z}}_k}$满足

$\sum\limits_{k = 0}^\infty {E} \{ {\left\| {{{{z}}_k}} \right\|^2}\} < {\gamma ^2}\sum\limits_{k = 0}^\infty {E} \{ {\left\| {{{{\omega}} _k}} \right\|^2}\} .$

2. 稳定性分析

定理1. 考虑CPS遭受未知攻击策略的DoS干扰攻击,采用基于观测器的控制策略(式(12)、(13)). 给定控制器增益矩阵 ${{K}}$和观测器增益矩阵 ${{L}}$. 如果存在矩阵 ${{P}} > 0$${{S}} > 0$,满足式(23),则闭环系统(式(15))指数均方稳定.

$\left[ {\begin{array}{*{20}{c}} { - {{P}}}& * & * & * & * \\ {\bf 0}&{ - {{S}}}& * & * & * \\ {{{{\varGamma }}_1}}&{{{{\varGamma }}_2}}&{ - {{{P}}^{ - 1}}}& * & * \\ {\bf 0}&{{{{\varGamma }}_3}}&{\bf 0}&{ - {{{S}}^{ - 1}}}& * \\ {\bf 0}&{{{{\varGamma }}_4}}&{\bf 0}&{\bf 0}&{{{{\varGamma }}_5}} \end{array}} \right] < {\bf 0}.$

式中: ${{{\varGamma }}_1}\! = {{A}} + {{BK}}$${{{\varGamma }}_2} \!= - {{BK}}$$ {{{\varGamma }}_3}\! ={{A}} - {\bar \beta _{{\alpha _k},k}}{{L}}{{{C}}_1}$${{{\varGamma }}_4}\! = $ $ {{L}}{{{C}}_1}$${{{\varGamma }}_5} = - \varepsilon _{{\sigma _k}}^{ - 1}{{{S}}^{ - 1}}$${\varepsilon _{{\sigma _k}}} = (1 - {\bar \beta _{{\alpha _k},k}}){\bar \beta _{{\alpha _k},k}}$.

证明. 定义Lyapunov函数:

$V({{{\eta }}_k}) = {{x}}_k^{\rm{T}}{{P}}{{{x}}_k} + {{e}}_k^{\rm{T}}{{S}}{{{e}}_k}.$

由闭环系统(式(15))可得

$\begin{aligned}[b] \!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\!{{E}}&\{ V({{{\eta }}_{k + 1}})|{x_k}, \cdots ,{x_0},{e_k}, \cdots ,{e_0}\} - V({{{\eta }}_k}) =\\ &{{E}} \{ {{x}}_{k + 1}^{\rm{T}}{{P}}{{{x}}_{k + 1}} + {{e}}_{k + 1}^{\rm{T}}{{S}}{{{e}}_{k + 1}}\} - {{x}}_k^{\rm{T}}{{P}}{{{x}}_k} - {{e}}_k^{\rm{T}}{{S}}{{{e}}_k} =\\ &{{E}} \left\{ {{{[({{A}} + {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k}]}^{\rm{T}}}} \right.{{P}}[({{A}} + {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k}] + \\ & {[({{A}} - {{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k} - ({\beta _{{\alpha _k},k}} - {{\bar \beta }_{{\alpha _k},k}}){{L}}{{{C}}_1}{{{e}}_k}]^{\rm{T}}}{{S}} \times \\ &\left. {[({{A}} - {{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k} - ({\beta _{{\alpha _k},k}} - {{\bar \beta }_{{\alpha _k},k}}){{L}}{{{C}}_1}{{{e}}_k}]} \right\} - {{x}}_k^{\rm{T}}{{P}}{{{x}}_k} -\\ & {{e}}_k^{\rm{T}}{{S}}{{{e}}_k}\! =\!{[({{A}} \!+\! {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k}]^{\rm{T}}}{{P}}[({{A}} + {{BK}}){{{x}}_k} \!-\! {{BK}}{{{e}}_k}] + \\ &{[({{A}} - {{\bar \beta }_{{\alpha _{k},k}}}{{L}}{{{C}}_1}){{{e}}_k}]^{\rm{T}}}{{S}}[({{A}} \!- \!{{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k}] + \\ & {{E}}\{ {({\beta _{{\alpha _k},k}} - {{\bar \beta }_{{\alpha _k},k}})^2}\} {({{L}}{{{C}}_1}{{{e}}_k})^{\rm{T}}}{{S}}({{L}}{{{C}}_1}{{{e}}_k}) - \\ &{{x}}_k^{\rm{T}}{{P}}{{{x}}_k} - {{e}}_k^{\rm{T}}{{S}}{{{e}}_k}. \end{aligned}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$

${ E}\{ {({\beta _{{\alpha _k},k}} - {\bar \beta _{{\alpha _k},k}})^2}\} = (1 - {\bar \beta _{{\alpha _k},k}}){\bar \beta _{{\alpha _k},k}}$,可以得到

$\begin{aligned}[b] \!\!\!\!\!\!\! \!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\!{E}& \{ V({{{\eta }}_{k + 1}})|{x_k}, \cdots ,{x_0},{e_k}, \cdots ,{e_0}\} - V({{{\eta }}_k}) = \\ & { E}\{ {{x}}_{k + 1}^{\rm{T}}{{P}}{{{x}}_{k + 1}} + {{e}}_{k + 1}^{\rm{T}}{{S}}{{{e}}_{k + 1}}\} - {{x}}_k^{\rm{T}}{{P}}{{{x}}_k} - {{e}}_k^{\rm{T}}{{S}}{{{e}}_k} = \\ &{[({{A}} + {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k}]^{\rm{T}}}{{P}}[({{A}} + {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k}] + \\ & {[({{A}} - {{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k}]^{\rm{T}}}{{S}}[({{A}} - {{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k}] + \\ & {\varepsilon _{{\sigma _k}}}{({{L}}{{{C}}_1}{{{e}}_k})^{\rm{T}}}{{S}}({{L}}{{{C}}_1}{{{e}}_k}) - {{x}}_k^{\rm{T}}{{P}}{{{x}}_k} - {{e}}_k^{\rm{T}}{{S}}{{{e}}_k} = \\ & {{\eta }}_k^{\rm{T}}({{\varPi }}_1^{\rm{T}}{{{\varPi }}_2}{{{\varPi }}_1} + {{{\varPi }}_3}){{{\eta }}_k} = {{\eta }}_k^{\rm{T}}{{\varOmega }}{{{\eta }}_k}. \end{aligned} $

式中:

根据Schur补,式(23)与 ${{\varOmega }} <{\bf 0}$等价. 因此

$\begin{aligned}[b] {E}\{ V({{{\eta }}_{k + 1}})|{x_k}, \cdots ,{x_0},{e_k}, \cdots ,{e_0}\} - V({{{\eta }}_k}) = \\ {{\eta }}_k^{\rm{T}}{{\varOmega }}{{{\eta }}_k} \leqslant - {\lambda _{\min}}( - {{\varOmega }}){{\eta }}_k^{\rm{T}}{{{\eta }}_k} < - \theta {{\eta }}_k^{\rm{T}}{{{\eta }}_k}. \quad \end{aligned} $

式中: $\lambda_{\max}(\cdot) $$\lambda_{\min}(\cdot) $分别为矩阵的最大、最小特征值, $ 0\! < \!\theta \! < \!\min\;\{ {\lambda _{\min }}( - {{\varOmega }}),\vartheta \}$$\vartheta \! =\! \max\;\{ {\lambda _{\max }}({{P}}), $ ${\lambda _{\max }}({{S}})\} . $

根据式(27),可以得到

$\begin{aligned}[b] {E}\{ V({{{\eta }}_{k + 1}})|{x_k}, \cdots ,{x_0},{e_k}, \cdots ,{e_0}\} - V({{{\eta }}_k}) < \\ - \theta {{\eta }}_k^{\rm{T}}{{{\eta }}_k} \leqslant \theta {{\eta }}_k^{\rm{T}}{{{\eta }}_k}/\vartheta . \qquad\quad \end{aligned} $

根据引理1和式(28),可以得到

$ {E}\{ {\left\| {{{{\eta }}_k}} \right\|^2}\} - V({{{\eta }}_k}) \leqslant \theta {(1 \!-\! {\theta /\vartheta })^k}{\left\| {{{{\eta }}_0}} \right\|^2}/ \vartheta ,\;0 < {\theta / \vartheta } < 1.\!\!\!\!\!$

根据定义1,闭环系统(式(15))指数均方稳定. 证毕.

3. H控制器设计

定理2. 考虑CPS遭受未知攻击策略的DoS干扰攻击,采用基于观测器的控制策略(见式(12)、(13)). 给定 $\gamma > 0$. 矩阵 ${{K}}$${{L}}$满足式(30). 如果存在矩阵 ${{P}} > 0$${{S}} > 0$,矩阵 ${{X}}$${{Y}}$${\bar{ P}}$满足式(31)、(32),则闭环系统(见式(15))指数均方稳定,且对于任意的非零 ${{{\omega}} _k}$均满足H性能.

$ {{K}} = {{\bar{ P}}^{ - 1}}{{X}},\;{{L}} = {{{S}}^{ - 1}}{{Y}}, $

$ {{PB}} = {{B\bar P}}, $

$\left[ {\begin{array}{*{20}{c}} { - {{P}}}& * & * & * & * & * & * \\ {\bf 0}&{ - {{S}}}& * & * & * & * & * \\ {\bf 0}&{\bf 0}&{ - {\gamma ^2}{{I}}}& * & * & * & * \\ {{{{\varPsi}} _1}}&{{{{\varPsi}} _2}}&{{{{\varPsi}} _3}}&{ - {{P}}}& * & * & * \\ {\bf 0}&{{{{\varPsi}} _4}}&{{{{\varPsi}} _5}}&{\bf 0}&{ - {{S}}}& * & * \\ {\bf 0}&{{{{\varPsi}} _6}}&{\bf 0}&{\bf 0}&{\bf 0}&{{{{\varPsi}} _7}}& * \\ {{{{\varPsi}} _8}}&{\bf 0}&{\bf 0}&{\bf 0}&{\bf 0}&{\bf 0}&{ - {{I}}} \end{array}} \right] < {\bf 0}.$

式中: ${{{\varPsi}} _1} = {{PA}} + {{BX}}$${{{\varPsi}} _2} = - {{BX}}$${{{\varPsi}} _3} = {{PD}}$${{{\varPsi}} _4} = {{SA}} - $ $ {\bar \beta _{{\alpha _k},k}}{{Y}}{{{C}}_1}$${{{\varPsi}} _5} = {{SD}}$${{{\varPsi}} _6} = {{Y}}{{{C}}_1}$${{{\varPsi}} _7} = - \varepsilon _{{\sigma _k}}^{ - 1}{{S}}$${{{\varPsi}} _8} = {{{C}}_2}$.

证明. 令 ${{\bar{ \eta }}_k} = {\left[ {{{\eta }}_k^{\rm{T}},{{\omega}} _k^{\rm{T}}} \right]^{\rm{T}}}$,对于任意非零 ${{{\omega}} _k}$,由式(15)、(26)可得

$ \begin{aligned}[b] \!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\! { E} & \{ V({{{\eta }}_{k + 1}})\} - { E}\{ V({{{\eta }}_k})\} + { E}\{ {{z}}_k^{\rm{T}}{{{z}}_k}\} - {\gamma ^2}{E}\{ {{\omega}} _k^{\rm{T}}{{{\omega}} _k}\} = \\ & {E}\{ {[({{A}} + {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k} + {{D}}{{{\omega}} _k}]^{\rm{T}}}{{P}} \times \\ & [({{A}} + {{BK}}){{{x}}_k} - {{BK}}{{{e}}_k} + {{D}}{{{\omega}} _k}] + \\ & {[({{A}} - {{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k} - ({\beta _{{\alpha _k},k}} - {{\bar \beta }_{{\alpha _k},k}}){{L}}{{{C}}_1}{{{e}}_k} + {{D}}{{{\omega}} _k}]^{\rm{T}}}{{S}} \times \\ & [({{A}} - {{\bar \beta }_{{\alpha _k},k}}{{L}}{{{C}}_1}){{{e}}_k} - ({\beta _{{\alpha _k},k}} - {{\bar \beta }_{{\alpha _k},k}}){{L}}{{{C}}_1}{{{e}}_k} + {{D}}{{{\omega}} _k}] - \\ & {{x}}_k^{\rm{T}}{{P}}{{{x}}_k} - {{e}}_k^{\rm{T}}{{S}}{{{e}}_k} + {{x}}_k^{\rm{T}}{{C}}_2^{\rm{T}}{{{C}}_2}{{{x}}_k} - {\gamma ^2}{{\omega}} _k^{\rm{T}}{{{\omega}} _k}\} = \\ &{E}\{ {\bar{ \eta }}_k^{\rm{T}}\left[ {\begin{array}{*{20}{c}} {{{\varOmega }} + {{{\varOmega }}_1}}& * \\ {{{{\varOmega }}_2}}&{{{{\varOmega }}_3}} \end{array}} \right]{{{\bar{ \eta }}}_k}\} = {E}\{ {\bar{ \eta }}_k^{\rm{T}}{\bar{ \varOmega }}{{{\bar{ \eta }}}_k}\} . \end{aligned} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! $

式中: ${{{\varOmega }}_1} = {{\bar{ C}}^{\rm{T}}}{\bar{ C}}$${{{\varOmega }}_2} = {{{D}}^{\rm{T}}}{{P}}{{\bar{ A}}_1} + {{{D}}^{\rm{T}}}{{S}}{{\bar{ A}}_2}$

根据Schur补,可以得到

$\left[ {\begin{array}{*{20}{c}} { - {{P}}}&\! * &\! * &\! * &\! * &\! * &\! * \\ {\bf 0}&\!{ - {{S}}}&\! * &\! * &\! * &\! * &\! * \\ {\bf 0}&\!{\bf 0}&\!{ - {\gamma ^2}{{I}}}&\! * &\! * &\! * &\! * \\ {{{\bar {{\varPsi}} }_1}}&\!{{{\bar {{\varPsi}} }_2}}&\!{{{\bar {{\varPsi}} }_3}}&\!{ - {{{P}}^{ - 1}}}&\! * &\! * &\! * \\ {\bf 0}&\!{{{\bar {{\varPsi}} }_4}}&\!{{{\bar {{\varPsi}} }_5}}&\!{\bf 0}&\!{ - {{{S}}^{ - 1}}}&\! * &\! * \\ {\bf 0}&\!{{{\bar {{\varPsi}} }_6}}&\!{\bf 0}&\!{\bf 0}&\!{\bf 0}&\!{{{\bar {{\varPsi}} }_7}}&\! * \\ {{{\bar {{\varPsi}} }_8}}&\!{\bf 0}&\!{\bf 0}&\!{\bf 0}&\!{\bf 0}&\!{\bf 0}&\!{ - {{I}}} \end{array}} \right] < {\bf 0}.$

式中: ${\bar {{\varPsi}} _1} = {{A}} + {{BK}}$${\bar {{\varPsi}} _2} = - {{BK}}$${\bar {{\varPsi}} _3} = {{D}}$${\bar {{\varPsi}} _4} = {{A}} - $ $ {\bar \beta _{{\alpha _k},k}}{{L}}{{{C}}_1}$${\bar {{\varPsi}} _5} = {{D}}$${\bar {{\varPsi}} _6} = {{L}}{{{C}}_1}$${\bar {{\varPsi}} _7} = - \varepsilon _{{\sigma _k}}^{ - 1}{{{S}}^{ - 1}}$${\bar {{\varPsi}} _8} = {{{C}}_2}$.

由于式(34)与 ${\bar{ \varOmega }} <{\bf 0}$等价,根据式(33),可以得到

$ \begin{split} & {E}\{ V({{{\eta }}_{k + 1}})\} - {E}\{ V({{{\eta }}_k})\} + \\ &\qquad {E}\{ {{z}}_k^{\rm{T}}{{{z}}_k}\} - {\gamma ^2}{E}\{ {{\omega}} _k^{\rm{T}}{{{\omega}} _k}\} < 0. \end{split} $

对式(35)累加,可以得到

$\begin{aligned}[b] \displaystyle \sum\limits_{k = 0}^\infty {E} \{ {\left\| {{{{z}}_k}} \right\|^2}\} < {\gamma ^2}\displaystyle \sum\limits_{k = 0}^\infty {E} \{ {\left\| {{{{\omega}} _k}} \right\|^2}\} + \\ {E}\{ V({{{\eta }}_0})\} - {E}\{ V({{{\eta }}_\infty })\} . \qquad \end{aligned} $

由于 ${{{\eta }}_0} ={\bf 0}$且闭环系统指数均方稳定,可以得到

$ \sum\limits_{k = 0}^\infty { E} \{ {\left\| {{{{z}}_k}} \right\|^2}\} < {\gamma ^2}\sum\limits_{k = 0}^\infty { E} \{ {\left\| {{{{\omega }}_k}} \right\|^2}\} . $

根据Schur补,并用矩阵 ${\rm{diag}}\;[ {{I}},{{I}},{{I}},{{P}},{{S}},{{S}},{{I}}]$分别左乘和右乘式(34),可以得到

$\left[ {\begin{array}{*{20}{c}} { - {{P}}}& * & * & * & * & * & * \\ {\bf{0}}&{ - {{S}}}& * & * & * & * & * \\ {\bf{0}}&{\bf{0}}&{ - {\gamma ^2}{{I}}}& * & * & * & * \\ {{{\hat {{\varPsi}} }_1}}&{{{\hat {{\varPsi}} }_2}}&{{{\hat {{\varPsi}} }_3}}&{ - {{P}}}& * & * & * \\ {\bf{0}}&{{{\hat {{\varPsi}} }_4}}&{{{\hat {{\varPsi}} }_5}}&{\bf{0}}&{ - {{S}}}& * & * \\ {\bf{0}}&{{{\hat {{\varPsi}} }_6}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{{{\hat {{\varPsi}} }_7}}& * \\ {{{\hat {{\varPsi}} }_8}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{ - {{I}}} \end{array}} \right] < {\bf 0}.$

式中: ${\hat {{\varPsi}} _1} \!=\! {{PA}} + {{PBK}}$${\hat {{\varPsi}} _2} \!=\! - {{PBK}}$${\hat {{\varPsi}} _3} \!= \!{{PD}}$${\hat {{\varPsi}} _4} \!=\! {{SA}} -$ $ {\bar \beta _{{\alpha _k},k}}{{SL}}{{{C}}_1}$${\hat {{\varPsi}} _5} = {{SD}}$${\hat {{\varPsi}} _6} = {{SL}}{{{C}}_1}$${\hat {{\varPsi}} _7} = - \varepsilon _{{\sigma _k}}^{ - 1}{{S}}$${\hat {{\varPsi}} _8} = {{{C}}_2}$.

${{X}} = {{{\bar P}{ K}}}$${{Y}} = {{SL}}$,结合式(31),可知式(38)等价于式(32). 式(32)又与式(23)等价,可得闭环系统(式(15))指数均方稳定且满足H性能. 另一方面,根据假设1, ${{B}}$为列满秩矩阵. 如果 ${{P}} > 0$且存在矩阵 ${\bar{ P}}$满足式(31),则有

${\rm{rank}}\;({\bar{ P}}) \geqslant {\rm{rank}}\;({{B\bar P}}) = {\rm{rank}}\;({{PB}}) \geqslant {\rm{rank}}\;({{B}}) = m,$

${{P}}$必须为非奇异矩阵. 因此可得式(30). 证毕.

定理3. 考虑CPS遭受未知攻击策略的DoS干扰攻击,采用基于观测器的控制策略(式(12)、(13)). 给定 $\gamma > 0$. 矩阵 ${{K}}$${{L}}$满足式(30). 如果存在矩阵 ${{{P}}_1} > 0$${{{P}}_2} > 0$${{S}} > 0$,矩阵 ${{X}}$${{Y}}$满足式(32),矩阵 $ P$满足式(20), ${{{U}}_1}$${{{U}}_2}$满足式(19),则闭环系统指数均方稳定且对于任意非零 ${{{\omega}} _k}$满足H性能. 表达式如下:

$ {{K}} = {{V}}{{{\varSigma }}^{ - 1}}{{P}}_1^{ - 1}{{\varSigma }}{{{V}}^{\rm{T}}}{{X}},\;{{L}} = {{{S}}^{ - 1}}{{Y}}. $

证明. 由于 ${{{P}}_1} > 0$${{{P}}_2} > 0$满足式(20),因此,根据引理2和式(31),可以得到

${{PB}} = {{P}}{{{U}}^{\rm{T}}}{\left[ {{{\varSigma }},{\bf 0}} \right]^{\rm{T}}}{{{V}}^{\rm{T}}} = {{{U}}^{\rm{T}}}{\left[ {{{\varSigma }},{\bf 0}} \right]^{\rm{T}}}{{{V}}^{\rm{T}}}{\bar{ P}}.$

根据引理3,将式(20)代入式(41),可以得到

${{{U}}^{\rm{T}}}{\rm diag}\;\left[ {{{{P}}_1},{{{P}}_2}} \right]{\left[ {{{\varSigma }},{\bf 0}} \right]^{\rm{T}}}{{{V}}^{\rm{T}}} = {{{U}}^{\rm{T}}}{\left[ {{{\varSigma }},{\bf 0}} \right]^{\rm{T}}}{{{V}}^{\rm{T}}}{\bar{ P}}.$

整理可得

$ {{\bar{ P}}^{ - 1}} = {{V}}{{{\varSigma }}^{ - 1}}{{P}}_1^{ - 1}{{\varSigma }}{{{V}}^{\rm{T}}}. $

根据式(30)、(43),可得式(40). 剩余证明,可参考定理2的证明过程. 证毕.

综上,最优H控制器可以通过求解如下以式(32)为约束条件的凸优化问题得到:

$ {\mathop {\min }\limits_{{{{P}}_1} > 0,\;{{{P}}_2} > 0,\;{{S}} > 0,\;{{X}},\;{{Y}}} \gamma } . $

4. 数值仿真

目前,基于网络的不间断电源系统(uninterrupted power system,UPS)[35]发展迅速,其稳定运行问题也得到广泛关注. 通过控制系统中的脉冲宽度调制逆变器,可以保证输出的交流电压不失真且稳定在预期值. 假设采样间隔为10 ms的1KVAUPS处于半负载工作点,其离散时间模型可由式(10)表示,相关系数[26]

初始值为 ${{{x}}_0} = {\left[ {1,0,0} \right]^{\rm{T}}}$${{\hat{ x}}_0} = {\left[ {0,0,0} \right]^{\rm{T}}}$,信号传输能量 ${p_{\rm{s}}} = 1.5$,干扰能量 $\;{\sigma ^2} = 1$,网络参数 $\xi = 3$;DoS干扰者的工作周期 $T = {\rm{1}}0$,休眠期 ${t_{\rm{s}}} = 5$,每次攻击所用能量 ${p_{{\rm{a}},k}} \in \{ 2.75, 3.00 ,3.25,3.50\} $,可得休眠期和攻击期的数据包传输成功率分别为 ${\bar \beta _{0,k}} = 0.915\;0$$\;{\bar \beta _{1,k}} \in \{ 0.314\;9,0.276\;0,0.239\;3,0.204\;6\} $.

1)情况1. 使用极点配置的常规控制策略,配置闭环系统极点为 $( - 2, - 1 \pm j)$,得到UPS在有DoS干扰攻击和无DoS干扰攻击下系统的状态范数,如图3所示. 由图可知,在周期DoS干扰攻击的影响下,利用常规控制策略已经无法实现系统稳定.

图 3

图 3   使用常规控制策略的不间断电源系统的状态范数

Fig.3   Norm of states for UPS using conventional control strategy


2)情况2. 使用基于观测器的H控制策略,可以得到 ${\gamma _{\min}} = 0.698\;1$,相应的控制器增益矩阵和观测器增益矩阵分别为

在有DoS干扰攻击和无DoS干扰攻击下,UPS系统的状态范数如图4所示. 可以看出,在周期DoS干扰攻击的影响下,基于观测器的H控制策略可以实现UPS的稳定,说明控制策略的正确性和有效性,且该控制策略同样适用于无攻击的情况,具有一定的应用广泛性.

图 4

图 4   使用H控制策略的不间断电源系统状态范数

Fig.4   Norm of states for UPS using H control strategy


图5所示,在信道固有因素和周期DoS干扰攻击影响下,测量信道发生数据包丢失. 图中,短线、长线分别表示发生在休眠期、攻击期的丢包情况. 由于DoS干扰攻击的影响,数据包在攻击期丢失的数量明显增多.

图 5

图 5   DoS干扰攻击下发生数据包丢失的时刻

Fig.5   Time of packet dropouts under DoS jamming attack


5. 结 语

研究周期DoS干扰攻击下某类CPS的H控制. 考虑DoS干扰攻击者能量受限并采用周期型攻击策略的情况,同时考虑无线信道固有的数据包丢失. 采用基于观测器的控制策略,在受攻击CPS未知DoS干扰者攻击策略的情况下,得到保证系统指数均方稳定且满足H性能指标的充分条件. 数值仿真证明,提出的控制策略不仅有效,而且适用于CPS未遭受DoS干扰攻击的情况. 然而,本研究仅考虑了能量受限DoS干扰者采用固定周期的攻击策略,对于更智能、更具隐蔽性的攻击策略的研究有所欠缺. 未来将进一步研究攻击策略,并考虑多种攻击同时攻击多条无线信道的情况.

参考文献

DERLER P, LEE E A, VINCENTELLIA S

Modeling cyber-physical systems

[J]. Proceedings of the IEEE, 2012, 100 (1): 13- 28

DOI:10.1109/JPROC.2011.2160929      [本文引用: 1]

KIM K D, KUMAR P R

Cyber-physical systems: a perspective at the centennial

[J]. Proceedings of the IEEE, 2012, 100 (13): 1287- 1308

[本文引用: 1]

JAZDI N. Cyber physical system in the context of industry 4.0 [C]// Proceedings of IEEE International Conference on Automation, Quality and Testing, Robotics. Cluj-Napoca: IEEE, 2014: 1−4.

[本文引用: 1]

LEE I, SOKOLSKY O, CHEN S J, et al

Challenges and research directions in medical cyber-physical systems

[J]. Proceedings of the IEEE, 2012, 100 (1): 75- 90

DOI:10.1109/JPROC.2011.2165270      [本文引用: 1]

MO Y L, KIM T H, BRANCIK K, et al

Cyber-physical security of a smart gird infrastructure

[J]. Proceedings of the IEEE, 2012, 100 (1): 195- 209

DOI:10.1109/JPROC.2011.2161428      [本文引用: 1]

LIU Y G, XU B G, DING Y H

Convergence analysis of cooperative breaking control for interconnected vehicle systems

[J]. IEEE Transactions on Intelligence Transport Systems, 2017, 18 (7): 1894- 1906

DOI:10.1109/TITS.2016.2615302      [本文引用: 1]

SAMPIGETHAYA K, POOVENDRAN R

Aviation cyber-physical systems: foundations for future aircraft and air transport

[J]. Proceedings of the IEEE, 2013, 101 (8): 1834- 1855

DOI:10.1109/JPROC.2012.2235131      [本文引用: 1]

FARWELL J P, ROHOZINSKI R

Stuxnet and the future of cyber war

[J]. Survival, 2011, 53 (1): 23- 40

DOI:10.1080/00396338.2011.555586      [本文引用: 1]

IASIELLO E. Cyber attack: a dull toll to shape foreign policy [C]// Proceedings of the International Conference on Cyber Conflict. Tallinn: IEEE, 2013: 1–18.

[本文引用: 1]

PETRENKO A S, PETRENKO S A, MAKOVEICHUK K A, et al. Protection model of PCS of subway from attacks type «wanna cry», «petya» and «bad rabbit» IoT [C]// Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. Moscow: IEEE, 2018: 945–949.

[本文引用: 1]

WOLF M, SERPANOS D

Safety and security in cyber-physical systems and internet-of-things systems

[J]. Proceedings of the IEEE, 2018, 106 (1): 9- 20

DOI:10.1109/JPROC.2017.2781198      [本文引用: 1]

TEIXEIRA A, PÉREZ D, SANDBERG H, et al. Attack models and scenarios for networked control systems [C]// Proceedings of the 1st International Conference on High Conference Networked Systems. Beijing: ACM, 2012: 55–64.

[本文引用: 1]

CÁRDENAS A A, AMIN S, SASTRY S. Secure control: towards survivable cyber-physical systems [C]// Proceedings of the 28th International Conference on Distributed Computing Systems Workshops. Beijing: IEEE, 2008: 495–500.

LEE P, CLARK A, BUSHNELL L, et al

A passivity framework for modeling and mitigating wormhole attacks on networked control systems

[J]. IEEE Transactions on Automatic Control, 2014, 59 (12): 3224- 3237

DOI:10.1109/TAC.2014.2351871      [本文引用: 1]

ZHANG H, CHENG P, SHI L, et al

Optimal denial-of-service attack scheduling with energy constraint

[J]. IEEE Transactions on Automatic Control, 2015, 60 (11): 3023- 3028

DOI:10.1109/TAC.2015.2409905      [本文引用: 2]

ZHANG H, CHENG P, SHI L, et al

Optimal DoS attack scheduling in wireless networked control system

[J]. IEEE Transactions on Control Systems Technology, 2016, 24 (3): 843- 852

DOI:10.1109/TCST.2015.2462741      [本文引用: 1]

FOROUSH S H, MARTĺNEZ S. On event-triggered control of linear systems under periodic denial of service attacks [C]// Proceedings of the 51st IEEE Annual Conference on Decision and Control. Maui: IEEE, 2012: 2551−2556.

[本文引用: 1]

DE PERSIS C, TESI P

Input-to-state stabilizing control under denial-of-service

[J]. IEEE Transactions on Automatic Control, 2015, 60 (11): 2930- 2944

DOI:10.1109/TAC.2015.2416924      [本文引用: 1]

DING K M, LI Y Z, QUEVEDO D E, et al

Multi-channel transmission schedule for remote state estimation under DoS attacks

[J]. Automatica, 2017, 78: 194- 201

DOI:10.1016/j.automatica.2016.12.020      [本文引用: 5]

LI Y Z, QUEVEDO D E, DEY S, et al

SINR-based DoS attack on remote state estimation: a game-theoretic approach

[J]. IEEE Transactions on Control of Network Systems, 2017, 4 (3): 632- 642

DOI:10.1109/TCNS.2016.2549640      [本文引用: 3]

ZHANG H, QI Y F, ZHOU H, et al

Testing and defending methods against DoS attack in state estimation

[J]. Asian Journal of Control, 2017, 19 (4): 1295- 1305

DOI:10.1002/asjc.1441      [本文引用: 2]

WANG Z D, HO D W C, LIU Y R, et al

Variance-constrained filtering for uncertain stochastic systems with missing measurements

[J]. IEEE Transactions on Automatic Control, 2003, 48 (7): 1254- 1258

DOI:10.1109/TAC.2003.814272      [本文引用: 5]

WU J, CHEN T W

Design of networked control systems with packet dropouts

[J]. IEEE Transactions on Automatic Control, 2007, 52 (7): 1314- 1319

DOI:10.1109/TAC.2007.900839      [本文引用: 2]

SASKIN A V, PETERSEN I R

Robust filtering with missing data and a deterministic description of noise and uncertainty

[J]. International Journal of Systems Science, 1997, 28 (4): 373- 390

DOI:10.1080/00207729708929397      [本文引用: 1]

FANG X S, WANG J C

Stochastic observer-based guaranteed cost control for networked control systems with packet dropouts

[J]. IET Control Theory and Applications, 2008, 2 (11): 980- 989

DOI:10.1049/iet-cta:20070379      [本文引用: 2]

WANG Z D, HO D W C, LIU Y R, et al

Robust H control for a class of nonlinear discrete time-delay stochastic systems with missing measurements

[J]. Automatica, 2009, 45 (3): 684- 691

DOI:10.1016/j.automatica.2008.10.025      [本文引用: 3]

XIONG J L, LAM J

Stabilization of linear systems over networks with bounded packet loss

[J]. Automatica, 2007, 43: 80- 87

DOI:10.1016/j.automatica.2006.07.017      [本文引用: 2]

TSE D, VISWANATH P. Fundamentals of wireless communication [M]. Cambridge: Cambridge University Press, 2005.

[本文引用: 2]

XU W Y, MA K, TRAPPE W, et al

Jamming sensor networks: attack and defense strategies

[J]. IEEE Network, 2006, 20 (3): 41- 47

DOI:10.1109/MNET.2006.1637931      [本文引用: 2]

LI M Y, KOUTSOPOULOS I, POOVENDRAN R

Optimal jamming attack strategies and network defense policies in wireless sensor networks

[J]. IEEE Transactions on Mobile Computing, 2010, 9 (8): 1119- 1133

DOI:10.1109/TMC.2010.75     

OSANAIYE O, ALFA A S, HANCKE G P

Statistical approach to detect jamming attacks in wireless sensor networks

[J]. Sensors, 2018, 18 (6): 1691

DOI:10.3390/s18061691      [本文引用: 1]

PROAKIS J, SALEHI M. Digital communications [M]. New York: McGraw-Hill, 2007.

[本文引用: 1]

LI Y Z, SHI L, CHENG P, et al

Jamming attacks on remote state estimation in cyber-physical systems: a game-theoretic approach

[J]. IEEE Transactions on Automatic Control, 2015, 60 (10): 2831- 2836

DOI:10.1109/TAC.2015.2461851      [本文引用: 1]

YUAN Y, YUAN H H, GUO L, et al

Resilient control of networked control system under DoS attacks: a unified game approach

[J]. IEEE Transactions on Industrial Informatics, 2016, 12 (5): 1786- 1794

DOI:10.1109/TII.2016.2542208      [本文引用: 1]

YANG F W, WANG Z D, HUNG Y S, et al

H control for networked systems with random communication delays

[J]. IEEE Transactions on Automatic Control, 2006, 51 (3): 511- 518

DOI:10.1109/TAC.2005.864207      [本文引用: 4]

/