浙江大学学报(工学版), 2019, 53(7): 1423-1430 doi: 10.3785/j.issn.1008-973X.2019.07.023

海洋工程

含透空结构浮体的微幅振荡辐射特性

乔卫亮,, 马来好, 封星, 孙玉清

Radiation of water waves induced by oscillation of floating body with porous structure

QIAO Wei-liang,, MA Lai-hao, FENG Xing, SUN Yu-qing

收稿日期: 2018-06-7  

Received: 2018-06-7  

作者简介 About authors

乔卫亮(1986−),男,讲师,博士生,从事海洋工程水动力学以及海底管道多相流研究.orcid.org/0000-0001-7575-4518.E-mail:xiaoqiao_fang@dlmu.edu.cn , E-mail:xiaoqiao_fang@dlmu.edu.cn

摘要

基于线性势流理论以及porous-wavemaker理论,针对带有侧立透空薄板、在三自由度(纵荡、垂荡和横摇)内作微幅运动的浮式结构物的波浪辐射问题,利用分离变量法以及边界匹配特征函数展开方法,以解析解的形式,建立该波浪辐射问题的二维无因次理论解析计算模型,得到各流体子区域内速度势函数以及该浮式结构物的无因次附加质量和辐射阻尼系数. 分析在不同的透空薄板透水系数下,该浮体的附加质量和辐射阻尼随无因次波长的变化趋势. 将部分解析计算结果与现有研究成果进行对比分析,一致性较好,验证了针对该问题提出的解析计算模型的正确性. 研究结果表明,在低频范围内,透水薄板的透水系数对该浮式结构物的水动力系数的影响较明显;随着透水能力的增大,该浮式结构物的水动力系数呈现出减小的趋势,这对改善浮式结构物的稳定性具有重要意义.

关键词: 透空结构 ; 浮式结构物 ; 波浪辐射 ; 附加质量 ; 辐射阻尼

Abstract

The wave radiation issues of oscillating floating body with vertical porous walls in three degrees of freedom (surge, pitch and roll) were analyzed based on the linear potential-flow and the porous-wavemaker theories by applying separate variable and boundary matched eigenfunction expansion methods. The two-dimensional dimensionless analytical models were theoretically developed to get velocity potentials of each fluid sub-domain as well as the dimensionless added masses and radiation damping coefficients of the floating body. The variation trend of the added masses and damping coefficients of the floating body versus the dimensionless wavelength were analyzed under the conditions of different porous-effect parameters associated with porous walls. Some cases of the presented analytical solutions matched well with the published results, which verified the correctness of the analytical solutions proposed for this radiation issue. Results showed that the dimensionless porous-effect parameter of porous wall had an obvious influence on the hydrodynamic coefficients of the floating body in the low frequency area. The hydrodynamic coefficients of the floating body decreased with the increase of porous-effect parameters, which was significant for the improvement of the stability of the floating body.

Keywords: porous structure ; floating structure ; wave radiation ; added mass ; radiation damping

PDF (1362KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

乔卫亮, 马来好, 封星, 孙玉清. 含透空结构浮体的微幅振荡辐射特性. 浙江大学学报(工学版)[J], 2019, 53(7): 1423-1430 doi:10.3785/j.issn.1008-973X.2019.07.023

QIAO Wei-liang, MA Lai-hao, FENG Xing, SUN Yu-qing. Radiation of water waves induced by oscillation of floating body with porous structure. Journal of Zhejiang University(Engineering Science)[J], 2019, 53(7): 1423-1430 doi:10.3785/j.issn.1008-973X.2019.07.023

应海洋资源勘探、开发利用的巨大需求,伴随着涉海活动由浅海逐渐走向深海,各种浮式海洋结构物不断进入工程应用领域,作为主要的环境载荷,波浪所产生的影响是海洋工程结构物设计过程中需要考虑的重要因素. 透空结构以显著的吸收波浪能、降低波浪-结构物相互作用强度的优势[1-2]在近岸工程领域中的固定式防波堤以及坐底式海洋结构物[3]中获得较广泛的工程应用,传统的浮式海洋结构物以非透空结构为主,本文将透空结构引入浮式海洋结构物中,以期为浮式海洋结构物的水动力性能优化提供一种新的路径.

自从透空结构造波理论[4]提出以来,透空结构在海洋结构物设计的理论研究和工程实践中均获得了较广泛的应用. Manam等[5]利用解析方法分析竖直透空隔板的波浪散射问题,Zhao等[6-7]对圆形水平透空结构的波浪载荷及水动力性能进行解析研究;Williams等[7]分析中间段带有透空结构、上下两端均不透水的浮式柱体的水动力系数;岳景云等[8]在线性波浪理论下,采用复合边界元法分析入射波对内、外壁皆透空双层透水沉箱的作用;Cho[9]使用数值模拟的方法分析侧立透水孔板对浮式结构水动力性能的影响. 在工程实践方面,崔勇等[10]对渔业生产中的透空网箱在波流场中的动态响应进行数值模拟;Besio等[3]将透空结构引入海上风力发电基础围护问题中,开展理论和试验分析,同时,透空结构被引入垂荡型圆柱浮子式波浪能装置中,对垂荡水动力特性进行解析研究[11].

以上研究多集中于透空结构对固定式结构物或单自由度浮式结构物所受波浪载荷产生的影响. 本文针对含侧立透空结构的浮式结构物在3个自由度上(纵荡、垂荡、横摇)的波浪辐射问题,基于porous-wavemaker理论和二维势流理论,采用解析方法,构建计算模型,分析透空结构的透水能力对水动力系数的影响机理;将部分解析计算结果与文献[12]的数值计算结果进行对比分析,以验证理论解析模型的正确性.

1. 理论计算模型

图1所示,一长度为 $2a$的矩形浮体置于水深为 $h$的水中,其浸入水中的高度为 $s$,2块长度为 $d - s$的刚性透空薄板(厚度可以忽略不计)分别连接在浮体两侧下方. 以浮体中心为原点,以水平方向为 $x$轴,以竖直方向为 $z$轴,建立笛卡尔坐标系.

图 1

图 1   带侧立透空薄板的浮式结构物

Fig.1   Diagram of floating body with vertical porous wall


假设在有限水深的流场范围内,流体不可压缩且无黏性,浮体系统在纵荡、垂荡以及横摇3个自由度上作小幅受迫运动,运动方程如下:

${X_j} = {X_{0j}}{\exp\;{ (- {\rm{i}}\omega t)}};\;j = 1,2,3.$

式中: $j$ 取1,2,3时分别表示纵荡、垂荡以及横摇3个自由度方向, ${X_j}$为浮体在各自由度上的位移, ${X_{0j}}$为相应的振幅.

以透空薄板为界限,将整个流场区域划分为3个子区域(如图1的I、II、III所示), ${\varPhi _{{R_{ji}}}}$表示第 $j$种运动在第 $i$区域产生的流体势函数,

${\varPhi _{{R_{ji}}}} = \mathop {{X_j}}\limits^ \cdot {\phi _{{R_{ji}}}} = {\rm{Re}} \left[ { - {\rm{i}}\omega {X_{0j}}{\phi _{{R_{ji}}}}(x,z){\exp{ (- {\rm{i}}\omega t)}}} \right].$

式中: ${\phi _{{R_{ji}}}}$为浮体系统单位速度的辐射势函数,根据势流理论可知,该辐射问题的速度势函数满足拉普拉斯方程,即

${\nabla ^2}{\phi _{{R_{ji}}}} = 0;\;j = 1,2,3,\;i = 1,2,3.$

其中, ${\phi _{{R_{1i}}}}$${\phi _{{R_{2i}}}}$${\phi _{{R_{3i}}}}$分别满足的边界条件有

$\left. \begin{aligned} & \frac{{\partial {\phi _{{R_{1i}}}}}}{{\partial z}} = 0,\;i = 1,2,3,\quad z = - h; \\ & \frac{{{\partial ^2}{\phi _{{R_{1i}}}}}}{{\partial {t^2}}} + g\frac{{\partial {\phi _{{R_{1i}}}}}}{{\partial z}} = 0,\;i = 1,3,\;z = 0,\quad \left| x \right| \geqslant a; \\ & \frac{{\partial {\phi _{{R_{12}}}}}}{{\partial z}} = 0,\quad z = - s,\;\left| x \right| \leqslant a. \end{aligned} \right\}$

$\left. \begin{aligned} & \frac{{\partial {\phi _{{R_{2i}}}}}}{{\partial z}} = 0,\;i = 1,2,3,\quad z = - h; \\ & \frac{{{\partial ^2}{\phi _{{R_{2i}}}}}}{{\partial {t^2}}} + g\frac{{\partial {\phi _{{R_{2i}}}}}}{{\partial z}} = 0,\;i = 1,3,\;z = 0,\;\left| x \right| \geqslant a; \\ & \frac{{\partial {\phi _{{R_{22}}}}}}{{\partial z}} = 1,\quad z = - s,\;\left| x \right| \leqslant a. \end{aligned} \right\}$

$\left. \begin{aligned} & \frac{{\partial {\phi _{{R_{3i}}}}}}{{\partial z}} = 0,\;i = 1,2,3,\;\;\;\;\;\;\;\;\;\;\;\;z = - h; \\ & \frac{{{\partial ^2}{\phi _{{R_{3i}}}}}}{{\partial {t^2}}} + g\frac{{\partial {\phi _{{R_{3i}}}}}}{{\partial z}} = 0,\;i = 1,3,\;z = 0,\;\left| x \right| \geqslant a; \\ & \frac{{\partial {\phi _{{R_{3i}}}}}}{{\partial n}} \!=\! {\rm{i}}\omega \left[ {(z \!-\! {\xi _z}){n_x} \!-\! (x \!-\! {\xi _x}){n_z}} \right],\;\text{在物体表面上.} \end{aligned} \right\}$

式中: $n = [{n_x},{n_z}]$为垂直矢量; $({\xi _x},{\xi _z})$为横摇运动的旋转中心,假设旋转中心位于 $z$轴,则 ${\xi _x} = 0$.

在流场区域边界 $x = \pm a$处,流经透空薄板的流体速度具有连续性,因此,

$\frac{{\partial {\phi _{{R_{j1}}}}}}{{\partial x}} = \frac{{\partial {\phi _{{R_{j2}}}}}}{{\partial x}} = {W_A}\left( {z,t} \right);\;\;j = 1,2,3.$

$\frac{{\partial {\phi _{{R_{j3}}}}}}{{\partial x}} = \frac{{\partial {\phi _{{R_{j2}}}}}}{{\partial x}} = {W_B}\left( {z,t} \right);\;\;j = 1,2,3.$

式中: ${W_A}\left( {z,t} \right)$${W_B}\left( {z,t} \right)$分别为流经透空薄板时的流体速度,根据达西定理和线性化的伯努利方程[13]可知,

$\left.\begin{gathered} {W_A}(z,t) = - {G_{01}}\left[ {\frac{{{k_0}}}{\omega }\left( {\frac{{\partial {\phi _{{R_{j1}}}}}}{{\partial t}} - \frac{{\partial {\phi _{{R_{j2}}}}}}{{\partial t}}} \right)} \right];\; \\ j = 1,2,3,\;\; - d \leqslant z \leqslant - s. \end{gathered} \right\}$

$\left.\begin{gathered} {W_B}(z,t) = - {G_{01}}\left[ {\frac{{{k_0}}}{\omega }\left( {\frac{{\partial {\phi _{{R_{j2}}}}}}{{\partial t}} - \frac{{\partial {\phi _{{R_{j3}}}}}}{{\partial t}}} \right)} \right];\; \\ j = 1,2,3,\;\;\;\; - d \leqslant z \leqslant - s. \end{gathered} \right\}$

式中: ${G_{01}}$${G_{02}}$为无量纲参数,分别为透空薄板A 和B的透水系数,

${G_{01}} = \frac{{\rho \omega {b_1}}}{{\mu {k_0}}},\;\;\;\;\;\;{G_{02}} = \frac{{\rho \omega {b_2}}}{{\mu {k_0}}}.$

在边界 $x = \pm a$处,浮体系统纵荡运动满足的压力连续和速度连续条件有:

${\phi _{{R_{12}}}} = \left\{ \begin{aligned} & {\phi _{{R_{11}}}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - d,\;x = - a; \\ & {\phi _{{R_{13}}}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - d,\;x = a. \end{aligned} \right. \tag{12a} $

$\frac{{\partial {\phi _{{R_{11}}}}}}{{\partial x}} = \left\{ \begin{gathered} \frac{{\partial {\phi _{{R_{12}}}}}}{{\partial x}},\;\;\;\; - h \leqslant z \leqslant - s,\;x = - a; \\ 1,\;\;\;\;\;\;\;\;\;\; - s \leqslant z \leqslant 0,\;x = - a. \\ \end{gathered} \right. \tag{12b} $

$\frac{{\partial {\phi _{{R_{13}}}}}}{{\partial x}} = \left\{ \begin{gathered} \frac{{\partial {\phi _{{R_{12}}}}}}{{\partial x}},\;\;\;\;\; - h \leqslant z \leqslant - s,\;x = a; \\ 1,\;\;\;\;\;\;\;\;\;\; - s \leqslant z \leqslant 0,\;x = a. \\ \end{gathered} \right. \tag{12c} $

在边界 $x = \pm a$处,浮体系统垂荡运动满足的压力连续和速度连续条件有:

${\phi _{{R_{22}}}} = \left\{ \begin{gathered} {\phi _{{R_{21}}}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - d,\;x = - a; \\ {\phi _{{R_{23}}}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - d,\;x = a. \\ \end{gathered} \right. \tag{13a} $

$\frac{{\partial {\phi _{{R_{21}}}}}}{{\partial x}} = \left\{ \begin{gathered} \frac{{\partial {\phi _{{R_{22}}}}}}{{\partial x}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - s,\;x = - a; \\ 0,\;\;\;\;\;\;\;\;\;\;\;\;\; - s \leqslant z \leqslant 0,\;x = - a. \\ \end{gathered} \right. \tag{13b} $

$\frac{{\partial {\phi _{{R_{23}}}}}}{{\partial x}} = \left\{ \begin{gathered} \frac{{\partial {\phi _{{R_{22}}}}}}{{\partial x}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - s,\;x = a; \\ 0,\;\;\;\;\;\;\;\;\;\;\;\;\; - s \leqslant z \leqslant 0,\;x = a. \\ \end{gathered} \right. \tag{13c} $

在边界 $x = \pm a$处,浮体系统横摇运动满足的压力连续和速度连续条件有:

${\phi _{{R_{32}}}} = \left\{ \begin{gathered} {\phi _{{R_{31}}}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - d,\;x = - a; \\ {\phi _{{R_{33}}}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - d,\;x = a. \\ \end{gathered} \right. \tag{14a} $

$\frac{{\partial {\phi _{{R_{31}}}}}}{{\partial x}} = \left\{ \begin{gathered} \frac{{\partial {\phi _{{R_{32}}}}}}{{\partial x}},\;\;\;\;\;\;\;\; - h \leqslant z \leqslant - s,\;x = - a; \\ z - {\xi _z},\;\;\;\;\;\;\;\;\;\;\;\;\; - s \leqslant z \leqslant 0,\;x = - a. \\ \end{gathered} \right. \tag{14b} $

$\frac{{\partial {\phi _{{R_{33}}}}}}{{\partial x}} = \left\{ \begin{gathered} \frac{{\partial {\phi _{{R_{32}}}}}}{{\partial x}},\;\;\;\;\;\;\; - h \leqslant z \leqslant - s,\;x = a; \\ z - {\xi _z},\;\;\;\;\;\;\; - s \leqslant z \leqslant 0,\;x = a. \\ \end{gathered} \right. \tag{14c} $

2. 理论模型解析求解

根据边界条件(4)~(6),利用分离变量法,求解拉普拉斯方程(3),可得速度势函数的表达式为

${\phi _{{R_{j1}}}} \!\!=\!\! \sum\limits_{m = 0}^\infty {{A_{jm}}{\exp\;{ \left(- {{\widetilde k}_m}(x \!+\! a)\right)}}\frac{{\cos\; \left({{\widetilde k}_m}(z \!+\! h)\right)}}{{\cos\; \left({{\widetilde k}_m}h\right)}}} {\exp{ \left(- {\rm{i}}\omega t\right)}},$

${\phi _{{R_{j3}}}} \!=\! \sum\limits_{m = 0}^\infty {{B_{jm}}{\exp\;{\left({{\widetilde k}_m}(x \!-\! a)\right)}}\frac{{\cos\; \left({{\widetilde k}_m}(z \!+\! h)\right)}}{{\cos\; \left({{\widetilde k}_m}h\right)}}} {\exp{ \left(- {\rm{i}}\omega t\right)}},$

$\begin{split} {\phi _{{R_{12}}}} =& \left( {{C_{10}}x + {D_{10}}} \right){\exp\;{ \left(- {\rm{i}}\omega t\right)}} + \\ & \sum\limits_{m = 1}^\infty {\left[ \begin{aligned} & {C_{1m}}\frac{{\cosh\; ({r_m}x)}}{{\cosh \;({r_m}a)}} + {D_{1m}}\frac{{\sinh \;({r_m}x)}}{{\sinh \;({r_m}a)}} \\ \end{aligned} \right]\times} \\ &\cos \left({r_m}(z + h)\right){\exp{ \left(- {\rm{i}}\omega t\right)}}, \end{split} $

$\begin{split} {\phi _{{R_{22}}}} = &\frac{{{{(z + h)}^2} - {x^2}}}{{2(h - s)}} + \left( {{C_{20}}x + {D_{20}}} \right){\exp{ \left(- {\rm{i}}\omega t\right)}} + \\ & \sum\limits_{m = 1}^\infty {\left[ {{C_{2m}}\frac{{\cosh\; ({r_m}x)}}{{\cosh\; ({r_m}a)}} + {D_{2m}}\frac{{\sinh\; ({r_m}x)}}{{\sinh \;({r_m}a)}}} \right]\times}\\ &\cos \left({r_m}(z + h)\right){\exp{ \left(- {\rm{i}}\omega t\right)}}, \end{split} $

$\begin{split} {\phi _{{R_{32}}}} =& \sum\limits_{m = 1}^\infty {\varepsilon \cos \left[ {{\gamma _m}(x - a)} \right]} \cosh \left[ {{\gamma _m}(z + h)} \right] + \\ & \left( {{C_{30}}x + {D_{30}}} \right){\exp{ \left(- {\rm{i}}\omega t\right)}} + \\ & \sum\limits_{m = 1}^\infty {\left[ {{C_{3m}}\frac{{\cosh\; ({r_m}x)}}{{\cosh\; ({r_m}a)}} + {D_{3m}}\frac{{\sinh\; ({r_m}x)}}{{\sinh\; ({r_m}a)}}} \right]\times} \\ & \cos \left({r_m}(z + h)\right){\exp{ \left(- {\rm{i}}\omega t\right).}} \\ \end{split} $

式中: ${A_{1m}}$${C_{1m}}$${D_{1m}}$${B_{1m}} $为未知复系数; $\;{\widetilde k_m}\;$${r_m}$${\gamma _m}$$\varepsilon $分别为

$ {\widetilde k_m} = \left\{ {{\rm{i}}{k_0}, - {k_1}, - {k_2}, - {k_3},\;\cdots, \;- {k_m},\; \cdots }\right\}, $

${\omega ^2} = - g{k_m}\tanh \; \left({k_m}h\right),$

${r_m} = \frac{{m{\text{π}}}}{{h - s}},$

${\gamma _m} = \frac{{m{\text{π}}}}{{2a}}\;(m = 1,2,3,\cdots),$

$\varepsilon = \frac{{\cos\;\left( 2a{\gamma _m}\right)}}{{\sinh \;\left[ {{\gamma _m}(h - s)} \right]a{\gamma _m}^3}}.$

$x = \pm a$时,利用速度连续性条件(12b)、(12c)、(13b)、(13c)、(14b)、(14c),结合 $\cos \left({\widetilde k_n}(z + h)\right)$在区域I和III内的积分区间 $ - h \leqslant z \leqslant 0$上的正交特性,可得

$\begin{split} & \int\limits_{ - h}^{ - s} {\frac{{\partial {\phi _{{R_{12}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z + \int\limits_{ - s}^0 1 \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z = \\ & \qquad\quad\; \int\limits_{ - h}^0 {\frac{{\partial {\phi _{{R_{11}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z,\;x = - a; \end{split} $

$\begin{split} & \int\limits_{ - h}^{ - s} {\frac{{\partial {\phi _{{R_{12}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z + \int\limits_{ - s}^0 1 \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z\; = \\ & \qquad\quad\; \int\limits_{ - h}^0 {\frac{{\partial {\phi _{{R_{13}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z,\;x = a; \end{split} $

$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \begin{split} & \int\limits_{ - h}^0 {\frac{{\partial {\phi _{{R_{21}}}}}}{{\partial x}}}\cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z = \\ & \qquad \int\limits_{ - h}^{ - s} {\frac{{\partial {\phi _{{R_{22}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z,\;x = - a; \end{split} $

$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\begin{split} & \int\limits_{ - h}^0 {\frac{{\partial {\phi _{{R_{23}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z = \qquad\quad\; \\ & \qquad \int\limits_{ - h}^{ - s} {\frac{{\partial {\phi _{{R_{22}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z,\;x = a; \end{split} $

$\begin{split} & \int\limits_{ - h}^{ - s} {\frac{{\partial {\phi _{{R_{32}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z \!+\! h)\right){\rm{d}}z \!+\!\! \int\limits_{ - s}^0 \!{(z \!-\! {\xi _z})} \;\cos \left({\widetilde k_n}(z \!+\! h)\right){\rm{d}}z = \\ &\qquad\quad\; \; \int\limits_{ - h}^0 {\frac{{\partial {\phi _{{R_{31}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z,\;x = - a; \end{split} $

$\begin{split} \int\limits_{ - h}^{ - s} {\frac{{\partial {\phi _{{R_{32}}}}}}{{\partial x}}}& \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z + \int\limits_{ - s}^0 {(z - {\xi _z})} \;\cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z = \\ & \int\limits_{ - h}^0 {\frac{{\partial {\phi _{{R_{33}}}}}}{{\partial x}}} \cos \left({\widetilde k_n}(z + h)\right){\rm{d}}z,\;x = a. \end{split} $

$x = \pm a$时,利用压力连续性条件(12a)、(13a)、(14a),结合 $\cos \left({r_n}(z + h)\right)$在区域II内的积分区间 $ - h \leqslant z \leqslant - s$上的正交特性,可得

$\begin{split} & \int\limits_{ - h}^{ - d} {{\phi _{{R_{j1}}}}\cos \;\left({r_n}(z \!+\! h)\right){\rm{d}}z} \!+\! \int\limits_{ - d}^{ - s} {{{\widetilde \phi }_{{R_{j1}}}}\cos \;\left({r_n}(z \!+\! h)\right){\rm{d}}z} = \\ & \qquad\;\;\; \int\limits_{ - h}^{ - s} {{\phi _{{R_{j2}}}}\cos\; \left({r_n}(z + h)\right){\rm{d}}z},\;x = - a,\;j = 1,2,3; \end{split} $

$\begin{split} & \int\limits_{ - h}^{ - d} {{\phi _{{R_{j3}}}}\cos\;\left( {r_n}(z \!+\! h)\right){\rm{d}}z} \!+\! \int\limits_{ - d}^{ - s} {{{\widetilde \phi }_{{R_{j3}}}}\cos \;\left({r_n}(z \!+\! h)\right){\rm{d}}z} = \\ & \qquad\;\;\; \int\limits_{ - h}^{ - s} {{\phi _{{R_{j2}}}}\cos \;\left({r_n}(z + h)\right){\rm{d}}z}, \;x = a,\;j = 1,2,3. \end{split} $

式中:

${\widetilde \phi _{{R_{11}}}} \!=\! \sum\limits_{m = 0}^\infty {{A_{1m}}\left( {1 \!+\! \frac{{{{\widetilde k}_m}}}{{{\rm{i}}{G_{01}}{k_0}}}} \right)} \frac{{\cos \;\left({{\widetilde k}_m}(z + h)\right)}}{{\cos \;\left({{\widetilde k}_m}h\right)}} \!+\! \frac{1}{{{\rm{i}}{G_{01}}{k_0}}},$

${\widetilde \phi _{{R_{21}}}} = \sum\limits_{m = 0}^\infty {{A_{2m}}\left( {1 + \frac{{{{\widetilde k}_m}}}{{{\rm{i}}{G_{01}}{k_0}}}} \right)} \frac{{\cos \;\left({{\widetilde k}_m}(z + h)\right)}}{{\cos \;\left({{\widetilde k}_m}h\right)}},$

${\widetilde \phi _{{R_{31}}}} \!=\! \sum\limits_{m = 0}^\infty {{A_{3m}}\left( {1 \!+\! \frac{{{{\widetilde k}_m}}}{{{\rm{i}}{G_{01}}{k_0}}}} \right)} \frac{{\cos \;\left({{\widetilde k}_m}(z + h)\right)}}{{\cos \;\left({{\widetilde k}_m}h\right)}} \!+\! \frac{z}{{{\rm{i}}{G_{01}}{k_0}}},$

$\begin{gathered} {\widetilde \phi _{{R_{13}}}} \!\!=\!\! \sum\limits_{m = 0}^\infty {{B_{1m}}\left( {1 \!+\! \frac{{{{\widetilde k}_m}}}{{{\rm{i}}{G_{02}}{k_0}}}} \right)} \frac{{\cos \;\left({{\widetilde k}_m}(z \!+\! h)\right)}}{{\cos \;\left({{\widetilde k}_m}h\right)}} \!-\! \frac{1}{{{\rm{i}}{G_{02}}{k_0}}}, \\ \end{gathered} $

${\widetilde \phi _{{R_{23}}}} = \sum\limits_{m = 0}^\infty {{B_{2m}}\left( {1 - \frac{{{{\widetilde k}_m}}}{{{\rm{i}}{G_{02}}{k_0}}}} \right)} \frac{{\cos \;\left({{\widetilde k}_m}(z + h)\right)}}{{\cos \;\left({{\widetilde k}_m}h\right)}},$

$ {\widetilde \phi _{{R_{33}}}} \!=\! \sum\limits_{m = 0}^\infty {{B_{3m}}\left( {1 \!+\! \frac{{{{\widetilde k}_m}}}{{{\rm{i}}{G_{02}}{k_0}}}} \right)} \frac{{\cos \;\left({{\widetilde k}_m}(z + h)\right)}}{{\cos \;\left({{\widetilde k}_m}h\right)}} \!-\! \frac{z}{{{\rm{i}}{G_{02}}{k_0}}}. $

用一个趋近于无穷大的实数M替代累和符号中的“ $\infty $”,将式(15)~(19)分别代入式(25)~(32),形成3个线性方程组. 每个方程组包含 $4(M + 1)$个线性方程和 $4(M + 1)$个未知复系数,3组线性方程分别对应3组未知复系数:A1mC1mD1mB1mA2mC2mD2mB2mA3mC3mD3mB3m$(m = 0,1,2,3,\cdots,M) $. 由此可以对上述未知复系数进行解析求解. 在此基础上可以对一系列的工程问题进行计算,浮体系统由于受迫运动所受到的波浪力以及波浪力矩(此时取 $(0,0)$作为横摇运动的旋转中心)为

$\begin{split} {F_{jk}} = &{\rm{i}}\rho \omega \int\limits_\varGamma {{\varPhi _{{R_{jk}}}}{\exp{ \left(- {\rm{i}}\omega t\right)}}{n_j}{\rm{d}}\varGamma } =\\ & \rho {\omega ^2}{X_{0j}}\int\limits_\varGamma {{\phi _{{R_{jk}}}}{\exp{ \left(- {\rm{i}}\omega t\right)}}{n_j}} {\rm{d}}\varGamma = \\ & {\omega ^2}{X_{0j}}{m_{jk}}{\exp{ (- {\rm{i}}\omega t)}} + {\rm{i}}\omega {X_{0j}}{d_{jk}}{\exp{ (- {\rm{i}}\omega t)}}. \end{split} $

式中: ${m_{jk}}$${d_{jk}}$分别为浮体受迫运动的附加质量系数和阻尼系数,

${m_{jk}} = {\rm{Re}}\; \left( {\rho \int\limits_\varGamma {{\phi _{{R_{jk}}}}{n_j}{\rm{d}}\varGamma } } \right) = {\rm{Re}}\; \left( {\rho {{\widetilde F}_{jk}}} \right),$

${d_{jk}} = {\rm{Im}}\; \left( {\rho \omega \int\limits_\varGamma {{\phi _{{R_{jk}}}}{n_j}{\rm{d}}\varGamma } } \right) = {\rm{Im}}\; \left( {\rho \omega {{\widetilde F}_{jk}}} \right),$

其中, ${\widetilde F_{jk}}$的计算公式为

$\begin{split} {\widetilde F_{11}} = &\int\limits_{ - d}^0 {{{\left. {{\phi _{{R_{11}}}}} \right|}_{x = - a}}{\rm{d}}z - \int\limits_{ - d}^0 {{{\left. {{\phi _{{R_{13}}}}} \right|}_{x = a}}{\rm{d}}z} } + \\ & \int\limits_{ - d}^{ - s} {{{\left. {{\phi _{{R_{12}}}}} \right|}_{x = - a}}{\rm{d}}z} - \int\limits_{ - d}^{ - s} {{{\left. {{\phi _{{R_{12}}}}} \right|}_{x = a}}{\rm{d}}z} = \\ & \sum\limits_{m = 1}^M {\frac{{{A_{1m}} - {B_{1m}}}}{{{{\widetilde k}_m}\cos \left({{\widetilde k}_m}h\right)}}\left[ {\sin \left({{\widetilde k}_m}h\right) - \sin \left({{\widetilde k}_m}(h - d)\right)} \right]} + \\ & 2a{C_{10}}(d \!-\! s) \!+\! \sum\limits_{m = 1}^M {\frac{{2{D_{1m}}}}{{{r_m}}}} \left[ {\sin \left(m\pi\right) \!-\! \sin \left({r_m}(h \!-\! d)\right)} \right], \end{split} $

$\begin{split} {\widetilde F_{22}} =& \int\limits_{ - a}^a {{{\left. {{\phi _{{R_{22}}}}} \right|}_{z = - s}}{\rm{d}}x} = \\ & 2a{D_{20}} + \sum\limits_{m = 1}^M {\frac{{2{C_{2m}}}}{{{r_m}}}\tanh \;({r_m}a)} \cos \left({r_m}(h - s)\right) + \\ & a(h - s) - {{{a^3}}}/[{{3(h - s)}}], \end{split} $

$\begin{split} {\widetilde F_{31}} = & {\widetilde F_{13}} = \left( {\int\limits_{ - d}^0 {{{\left. {{\phi _{{R_{31}}}}} \right|}_{x = - a}}{\rm{d}}z - \int\limits_{ - d}^0 {{{\left. {{\phi _{{R_{33}}}}} \right|}_{x = a}}{\rm{d}}z} } } \right) + \\ & \left( {\int\limits_{ - d}^{ - s} {{{\left. {{\phi _{{R_{32}}}}} \right|}_{x = - a}}{\rm{d}}z - \int\limits_{ - d}^{ - s} {{{\left. {{\phi _{{R_{32}}}}} \right|}_{x = a}}{\rm{d}}z} } } \right) = \\ & \sum\limits_{m = 0}^M {\left( {{A_{3m}} - {B_{3m}}} \right)} \frac{{\sin \left({{\widetilde k}_m}h\right) - \sin \left({{\widetilde k}_m}(h - d)\right)}}{{{{\widetilde k}_m}\cos \left({{\widetilde k}_m}h\right)}} - \\ & 2(h - s)\left[ {\frac{{{a^3}}}{{6(h - s)}} + a{C_{30}}} \right] + \\ & \frac{{a{{(h - s)}^3} - a{{(h - d)}^3}}}{{3(h - s)}} + \sum\limits_{m = 1}^M {\frac{{2{D_{3m}}}}{{{r_m}}}} \sin \left({r_m}(h - d)\right), \end{split} $

3. 计算结果与分析

在解析计算的过程中,当速度势函数表达式中的级数截断项取值为40时,计算结果已经满足收敛要求,因此取 $M = 40$. 对附加质量系数和阻尼系数进行无量纲处理后,如图2~5所示为该带有侧立透空薄板的浮体系统在三自由度受迫运动的情形下,将 ${s/h} = {1/3}$$d/h = 1/2$$a/h = 1/6$作为解析计算模型的输入条件,得到的附加质量系数和阻尼系数随无量纲参数 ${k_0}h$的变化趋势. 当 ${G_{01}} = {G_{02}} = \infty $时,即透空薄板的透水系数趋近于无穷大,相当于不存在透空薄板的情形,Zheng等[12]对该极限情况下矩形浮体的水动力系数进行数值计算. 如图2~5所示,将本文的解析计算结果与文献[12]的计算结果进行对比,由于所采用的计算方法不同(文献[12]采用边界元法,本文采用解析方法),两者的计算结果存在一定差异,尤其是在低频区域,最大差异为2.4%,可以认为两者近似相等,从而验证了所构建的解析计算模型的正确性.

图 2

图 2   纵荡方向上浮体的水动力系数计算结果

Fig.2   Hydrodynamic coefficients of surge-surge


图 3

图 3   垂荡方向上浮体的水动力系数计算结果

Fig.3   Hydrodynamic coefficients of heave-heave


图 4

图 4   横摇方向上浮体的水动力系数计算结果

Fig.4   Hydrodynamic coefficients of roll-roll


图 5

图 5   纵荡-横摇相耦合的水动力系数计算结果

Fig.5   Hydrodynamic coefficients of surge-roll


图2~5所示,同时改变透空薄板A和B的透水系数后,浮体系统的无因次水动力系数均呈现出不同程度的变化:浮体系统在作小幅受迫运动时,随着透空薄板透水系数的增加,透空薄板的迎浪面积减小,浮体系统所受到的波浪激励力相应减小,导致浮体系统的附加质量系数和辐射阻尼系数均呈现减小趋势,尤其是在长波区域,减小趋势更明显. 对于纵荡方向上的水动力系数(见图2),当 ${k_0}h \leqslant 2$时,无因次的水动力系数对透空薄板透水能力的变化较敏感;当 ${k_0}h \geqslant 4$时,透水系数对水动力系数产生的影响很小,几乎可以忽略不计. 值得注意的是,纵荡方向上的水动力系数(见图5)与纵荡-横摇相耦合的水动力系数的变化趋势基本一致,仅存在“正”、“负”符号之差. 对于垂荡水动力系数(见图3),透空薄板的引入虽然增加了附加质量系数,但是在一定程度上降低了辐射阻尼. 对于横摇水动力系数(见图4),当 ${k_0}h \leqslant 1$时,附加质量系数对透水系数的变化较敏感,辐射阻尼对透水系数的变化较敏感的区域是 $1 \leqslant {k_0}h \leqslant 3$.

为了分析浮体系统两侧各自透空薄板的透水系数对浮体水动力性能的影响,开展“A侧透水系数相同,B侧不同”和“A侧透水系数不同,B侧相同”的几组算例分析,数值计算结果如图2~4所示. 结果表明:对于纵荡和垂荡水动力系数(附加质量系数和阻尼系数),A侧(迎浪面)透空薄板的影响作用强于B侧;对于横摇水动力系数,B侧透空薄板的影响作用略强于A侧.

图6~8所示为透空薄板水下深度对浮体系统水动力数值计算结果的影响. 随着透空薄板水下深度的增加,浮体系统在3个自由度上的无因次水动力系数基本呈现出了上升的趋势,尤其是在低频区域,这种上升趋势尤为明显;在高频区域内,透空薄板水下深度对浮体系统水动力因数的影响逐渐弱化,甚至可以忽略. 值得注意的是,随着透空薄板水下深度的增加,在低频区域内,垂荡阻尼系数呈现出了下降的趋势,但是下降值小于其他水动力系数的上升值.

图 6

图 6   透空薄板水下深度对纵荡数值结果的影响

Fig.6   Influence of submerged depth of porous wall to hydrodynamic coefficients of surge-surge


图 7

图 7   透空薄板水下深度对垂荡数值结果的影响

Fig.7   Influence of submerged depth of porous wall to hydrodynamic coefficients of heave-heave


图 8

图 8   透空薄板水下深度对横摇数值结果的影响

Fig.8   Influence of submerged depth of porous wall to hydrodynamic coefficients of roll-roll


4. 结 语

本文将透空薄板结构引入深水浮式结构物的设计中,针对带有侧立透空薄板的浮式结构物在3个自由度上的微幅受迫运动,建立水动力性能分析的解析计算模型. 研究结果表明,在低频区域( ${k_0}h \leqslant 1$),透空薄板的透水性能对浮体水动力系数的影响较明显,在高频区域其影响基本可以忽略不计;迎浪面透空薄板对浮体水动力系数的影响作用强于被浪面;随着透水系数的增加,浮体的水动力系数均呈现出了减小的趋势,说明透水能力越强,浮体的运动越趋于稳定. 将部分解析计算结果与已有计算结果进行对比分析,验证了提出的解析计算模型可以用于计算和预测以提出的浮式结构物为原型的海洋结构物的水动力性能. 本文的研究成果可以为透空薄板在深海浮式结构物设计和工程实践工作提供一定的理论分析基础.

参考文献

QIAO W L, WANG K H, SUN Y Q

Scattering of water waves by a floating body with two vertically attached porous walls

[J]. Journal of Engineering Mechanics, 2018, 144 (2): 04017162

DOI:10.1061/(ASCE)EM.1943-7889.0001384      [本文引用: 1]

CHO I H, KIM M H

Wave absorbing system using in-clined perforated plates

[J]. Journal of Fluid Mechanics, 2008, 608 (8): 1- 20

[本文引用: 1]

BESIO G, LOSADA M A

Sediment transport patterns at Trafalgar offshore windfarm

[J]. Ocean Engineering, 2008, 35 (7): 653- 665

DOI:10.1016/j.oceaneng.2008.01.002      [本文引用: 2]

CHWANG A T

A porous–wavemaker theory

[J]. Journal of Fluid Mechanics, 1983, 132 (20): 395- 406

[本文引用: 1]

MANAM S R, SIVANESAN M

Scattering of water waves by vertical porous barriers: an analytical approach

[J]. Wave Motion, 2016, 67 (12): 89- 101

[本文引用: 1]

ZHAO F F, ZHANG T Z, WAN R, et al

Hydrodynamic loads acting on a circular porous plate horizontally sub merged in waves

[J]. Ocean Engineering, 2017, 136 (5): 168- 177

[本文引用: 1]

WILLIAMS A N, LI W, WANG K H

Water wave interaction with a floating porous cylinder

[J]. Ocean Engineering, 2000, 27 (1): 1- 28

DOI:10.1016/S0029-8018(98)00078-X      [本文引用: 2]

岳景云, 何翊钧, 庄世璇

波浪与内外壁透空双层透水结构相互作用

[J]. 哈尔滨工程大学学报, 2016, 37 (11): 1473- 1478

[本文引用: 1]

YUEH Ching-yun, HO Yi-chun, CHUANG Shih-hsuan

Wave interaction with a concentric cylinder comprising dual porous structures

[J]. Journal of Harbin Engineering University, 2016, 37 (11): 1473- 1478

[本文引用: 1]

CHO I H

Transmission coefficients of a floating rectangu-lar breakwater with porous side plates

[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8 (1): 53- 65

DOI:10.1016/j.ijnaoe.2015.10.002      [本文引用: 1]

崔勇, 关长涛, 万荣, 等

浮式鲆鲽类网箱在波流场中动态响应的数值模拟

[J]. 工程力学, 2015, 32 (3): 249- 256

[本文引用: 1]

CUI Yong, GUAN Chang-tao, WAN Rong, et al

Numerical simulation of floating flatfish cage behavior under waves and currents

[J]. Engineering Mechanics, 2015, 32 (3): 249- 256

[本文引用: 1]

赵玄烈, 宁德志, 康海贵, 等

波浪作用下上部带有透空结构的圆筒垂向水动力特性的解析研究

[J]. 工程力学, 2017, 34 (12): 239- 247

[本文引用: 1]

ZHAO Xuan-lie, NING De-zhi, KANG Hai-gui, et al

Analytical study on the vertical hydrodynamics of a trun-cated cylinder with upper porous wall and inner column

[J]. Engineering Mechanics, 2017, 34 (12): 239- 247

[本文引用: 1]

ZHENG Y H, YOU Y G, SHEN Y M

On the radiation and diffraction of water waves by a rectangular buoy

[J]. Ocean Engineering, 2004, 31 (8): 1063- 1082

[本文引用: 4]

WANG K H, REN X

Water waves on flexible and porous breakwaters

[J]. Journal of Fluid Mechanics, 1993, 119 (5): 1025- 1047

[本文引用: 1]

/