1. School of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China 2. School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China 3. Surveying and Mapping Engineering Institute, Liaoning Vocational College of Ecological Engineering, Shenyang 110101, China
A remote sensing image change detection method based on deep learning was proposed to obtain reliable training samples and improve the accuracy of remote sensing image change detection. Firstly, texture features (gray co-occurrence matrix method) are selected by structural similarity method (SSIM), and the multitemporal remote sensing image difference image (DI) and textural feature DI obtained by change vector analysis (CVA) are fused to construct the final DI, then the difference images are denoised by the constructed variational denoising model. Secondly, the frequency domain significance method is used to obtain the DI saliency map, and the coarse change detection map obtained by selecting a threshold for the DI saliency map is pre-classified (change, unchanged and undetermined) by the fuzzy c-means (FCM) clustering algorithm. Finally, the neighborhood features of the changed pixels and unchanged pixels extracted from remote sensing images are introduced into the deep neural network model for training, and the trained deep neural network model is used to detect the changes in multitemporal remote sensing image, then the final change detection map is obtained. Experiment on three real remote sensing image data sets shows that the change detection accuracy of the proposed method is higher than that of other comparison methods.
Chang WANG,Yong-sheng ZHANG,Xu WANG,Ying YU. Remote sensing image change detection method based on deep neural networks. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2138-2148.
Fig.2Flow chart of change detection method based on deep neural network
Fig.3Experimental remote image data sets
Fig.4DIs of three remote sensing image data sets obtained by proposed DI (no denoising), proposed DI (variational denoising) and CVA method
Fig.5DI significance graph and coarse change detection graph of three remote sensing image data sets
数据集
方法
FN
FP
OE
PCC
KC
Landsat-7
CVA+FDS+FCM+DNNs
6380
241
6621
0.9742
0.8383
本研究方法(无去噪)
1752
1650
3402
0.9867
0.9259
本研究方法(变分去噪)
1686
1654
3340
0.9870
0.9272
Spot5数据集
CVA+FDS+FCM+DNNs
12360
6741
19101
0.9208
0.5761
本研究方法(无去噪)
7114
8023
15137
0.9373
0.6890
本研究方法(变分去噪)
6501
7766
14267
0.9409
0.7052
Ikonos数据集
CVA+FDS+FCM+DNNs
32816
5043
37859
0.9657
0.9075
本研究方法(无去噪)
19048
17875
36932
0.9666
0.9127
本研究方法(变分去噪)
18824
14228
33052
0.9701
0.9222
Tab.1Statistical results of change detection evaluation indexes of three remote sensing image data sets in experiment 1
Fig.6Experimental results of three remote sensing image data sets change detection in experiment 1
数据集
去噪方法
FN
FP
OE
PCC
KC
Landsat-7
Lee滤波
1532
1861
3393
0.9868
0.9256
Frost滤波
1562
1829
3392
0.9868
0.9257
均值滤波
1514
1834
3348
0.9869
0.9266
变分去噪
1686
1654
3340
0.9870
0.9272
Spot5数据集
Lee滤波
6877
8022
14899
0.9382
0.6928
Frost滤波
7031
7902
14933
0.9381
0.6934
均值滤波
6752
8064
14816
0.9387
0.6942
变分去噪
6501
7766
14267
0.9409
0.7052
Ikonos数据集
Lee滤波
22474
14482
36956
0.9663
0.9128
Frost滤波
23189
14482
37671
0.9659
0.9117
均值滤波
20523
15037
35560
0.9678
0.9164
变分去噪
18824
14228
33052
0.9701
0.9222
Tab.2Statistical results of change detection and evaluation indicators of three remote sensing image data sets by different denoising methods in proposed method
Fig.7Change detection results of three experimental remote sensing image data sets by different denoising methods in proposed method
数据集
方法
FN
FP
OE
PCC
KC
Landsat-7
CVA+FLICM
1113
3506
4619
0.9824
0.8956
CVA+MRFFCM
1439
4272
5711
0.9782
0.8699
CVA+SVM
1567
6286
7753
0.9704
0.8466
CVA+FDS+FCM+ELM
7983
189
8172
0.9688
0.7952
PCAKM
5103
833
5936
0.9774
0.8611
JFCM+DNNs
346
7658
8004
0.9687
0.7996
本研究方法(变分去噪)
1686
1654
3340
0.9870
0.9272
Spot5数据集
CVA+FLICM
26418
3481
29899
0.8787
0.5257
CVA+MRFFCM
25247
12176
37423
0.8481
0.4582
CVA+SVM
26364
9287
35651
0.8553
0.4649
CVA+FDS+FCM+ELM
32611
1766
34377
0.8605
0.4093
PCAKM
28269
9808
38077
0.8455
0.4211
JFCM+DNNs
9508
8314
17822
0.9261
0.6456
本研究方法(变分去噪)
6501
7766
14267
0.9409
0.7052
Ikonos数据集
CVA+FLICM
40622
27961
68583
0.9386
0.8366
CVA+MRFFCM
39397
42065
81462
0.9270
0.8094
CVA+SVM
42581
31325
73906
0.9338
0.8243
CVA+FDS+FCM+ELM
40950
23812
64762
0.9420
0.8449
PCAKM
48680
45876
94556
0.9153
0.7773
JFCM+DNNs
14724
34830
49554
0.9551
0.8800
本研究方法(变分去噪)
18824
14228
33052
0.9701
0.9222
Tab.3Statistical results of change detection and evaluation indexes of three remote sensing image data sets in experiment 2
Fig.8Experimental results of three remote sensing image data sets change detection in experiment 2
[1]
HUSSAIN M, CHEN D, CHENG A Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80 (2): 91- 106
[2]
BOVOLO F, BRUZZONE L A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (1): 218- 236
doi: 10.1109/TGRS.2006.885408
[3]
ZHANG M, ZHAO Y Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22 (1): 119- 131
[4]
FENG W, ZHANG Y. Object-oriented change detection for remote sensing images based on multi-scale fusion [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1142-1151.
[5]
LI L, SHU N, WANG K Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartogrphica Sinica, 2014, 43 (9): 945- 953
[6]
CELIK T Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6 (4): 772- 776
doi: 10.1109/LGRS.2009.2025059
[7]
MISHRA N S, GHOSH S, GHOSH A Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images[J]. Applied Soft Computing, 2012, 12 (8): 2683- 2692
doi: 10.1016/j.asoc.2012.03.060
[8]
STELIOS K, VASSILIOS C A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19 (5): 1328- 1337
doi: 10.1109/TIP.2010.2040763
[9]
GONG M, ZHOU Z, MA J Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering[J]. IEEE Transactions on Image Processing, 2012, 21 (4): 2141- 2151
doi: 10.1109/TIP.2011.2170702
[10]
GAO F, DONG J, LI B. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine[J]. Journal of Applied Remote Sensing, 2016, 10(4): 1-14.
[11]
TAN K, JIN X, PLAZA A Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (8): 3339- 3451
[12]
GONG M, ZHAO J, LIU J Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27 (1): 125- 138
doi: 10.1109/TNNLS.2015.2435783
[13]
ZHANG X, CHEN X, LI F Change detection method for high resolution remote sensing images using deep learining[J]. Acta Geodaetica et Cartogrphica Sinica, 2017, 46 (8): 999- 1008
[14]
王昶, 王旭, 纪松 采用变分法的遥感影像条带噪声去除[J]. 西安交通大学学报, 2019, 53 (3): 143- 149 WANG Chang, WANG Xu, JI Song Strip noise removal of remote images by variation[J]. Journal of Xi'an Jiaotong University, 2019, 53 (3): 143- 149