Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1177-1184    DOI: 10.3785/j.issn.1008-973X.2020.06.015
Computer Technology     
SeqRec: sequential-based recommendation model with long-term preference and instant interest
Yan ZHANG(),Bin GUO*(),Qian-ru WANG,Jing ZHANG,Zhi-wen YU
School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
Download: HTML     PDF(767KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The user’s stable long-term preferences and dynamic instant interests were obtained by modeling on the user’s historical behavior records, and the user preferences were aggregated for personalized recommendation. Firstly, the users’ reviews on the items were extracted to represent the characteristics of the items. Secondly, users’ historical behavior records were used to represent their stable long-term preferences, and query data was used to model their instant interests. Third, the user’s final preferences were aggregated by assigning different weights to the long-term preferences and instant interests through the attention mechanism. Experiments on real data sets of Amazon were conducted to evaluate the performance of SeqRec model, and results show that it is superior to the current state-of-the-art sequential recommendation methods more than 10% in recall rate and percision ratio. Meanwhile, SeqRec model proves that the long-term preferences and instant interests of different users have different influences on their next purchases.



Key wordssequential data      personalized recommendation      long-term preferences      instant interests      attention mechanism     
Received: 02 January 2020      Published: 06 July 2020
CLC:  TU 111  
Corresponding Authors: Bin GUO     E-mail: 1065120019@qq.com;guob@nwpu.edu.cn
Cite this article:

Yan ZHANG,Bin GUO,Qian-ru WANG,Jing ZHANG,Zhi-wen YU. SeqRec: sequential-based recommendation model with long-term preference and instant interest. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1177-1184.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.015     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1177


SeqRec:基于长期偏好和即时兴趣的序列推荐模型

通过对用户的历史购物序列进行建模,得到用户稳定的长期偏好和动态的即时兴趣,并聚合长期偏好和即时兴趣进行个性化推荐. 提取用户对商品的评论内容用于表示商品的特征;使用递归神经网络从用户的历史购买序列数据中学习用户稳定的长期偏好,使用提问数据对用户不断变化的即时兴趣进行建模;通过注意力机制为长期偏好以及即时兴趣分配不同的权重,得到用户最终偏好的向量表示. 在亚马逊真实数据集上的实验结果表明,SeqRec模型在召回率和精确率上比当前主流的序列推荐方法至少超出10%;SeqRec模型证明不同用户的长期偏好和即时兴趣对其下次购买物品的影响程度不同.


关键词: 序列数据,  个性化推荐,  长期偏好,  即时兴趣,  注意力机制 
Fig.1 Framework of SeqRec model:sequential-based recommendation model with long-term preferences and instant interests
数据集 n m nbuy nrel
Electronics 196 114 65 124 19 445 4 881
Baby 17 217 4 982 1 321 213
Tab.1 Statistics for electronic products and baby products dataset
数据集 评价指标 R1 R5 R10 H1 H5 H10
Baby Caser 0.008 3(0.002 7) 0.022 5(0.003 0) 0.038 8(0.002 4) 0.015 0(0.005 0) 0.056 25(0.005 6) 0.110 0(0.003 1)
DREAM 0.003 0(0.001 0) 0.004 3(0.000 9) 0.033 7(0.004 4) 0.015 0(0.005 0) 0.031 30(0.004 0) 0.083 75(0.009 4)
SeqRec 0.006 3(0.001 8) 0.044 9(0.008 4) 0.056 9(0.009) 0.023 1(0.004 9) 0.080 0(0.010 4) 0.146 2(0.015 4)
提升幅度 ?24% 99% 47% 54% 42% 33%
Electronics Caser 0.001 3(0.000 5) 0.010 0(0.003 1) 0.025 0(0.005 1) 0.007 5(0.002 0) 0.040 8(0.001 2) 0.073 3(0.006 5)
DREAM 0.000 5(0.000 4) 0.011 5(0.001 5) 0.021 5(0.001 5) 0.005 0(0.002 0) 0.040 8(0.009 2) 0.076 6(0.011 2)
SeqRec 0.001 4(0.001 0) 0.019 7(0.007 0) 0.027 8(0.004 7) 0.010 0(0.003 1) 0.047 5(0.008 2) 0.090 0(0.013 5)
提升幅度 8% 71% 11% 33% 16% 17%
Tab.2 Comparison of recall rate and hit rate results between SeqRec model and baselines
Fig.2 Weights of different users'long-term preferences and instant interests
[1]   KARATZOGLOU A, BALTRUNAS L, SHI Y. Learning to rank for recommender systems [C] // Proceedings of the 7th ACM Conference on Recommender Systems. Hong Kong: ACM, 2013: 493-494.
[2]   KOREN Y, BELL R, VOLINSKY C Matrix factorization techniques for recommender systems[J]. Computer, 2009, (8): 30- 37
[3]   KOREN Y. Collaborative filtering with temporal dynamics [C] // Proceedings of the 15th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. Pairs: ACM, 2009: 447-456.
[4]   LIU Q, ZENG X Y, ZHU H S, et al. Mining indecisiveness in customer behaviors [C] // 2015 IEEE International Conference on Data Mining. Atlantic City: IEEE, 2015: 281-290.
[5]   ZHANG F Z, YUAN N J, Lian D F, et al. Collaborative knowledge base embedding for recommender systems [C] // Proceedings of the 22nd ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 353-362.
[6]   SHANG S, DING R G, ZHENG K, et al Personalized trajectory matching in spatial networks[J]. The VLDB Journal—The International Journal on Very Large Data Bases, 2014, 23 (3): 449- 468
doi: 10.1007/s00778-013-0331-0
[7]   YAP G E, LI X L, PHILIP S Y. Effective next-items recommendation via personalized sequential pattern mining [C] // International Conference on Database Systems for advanced applications. Berlin: Springer, 2012: 48-64.
[8]   GRBOVIC M, RADOSAVLJEVIC V, DJURIC N, et al. E-commerce in your inbox: product recommendations at scale [C] // Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney: ACM, 2015: 1809-1818.
[9]   DONG D S, ZHENG X L, ZHANG R X, et al. Recurrent collaborative filtering for unifying general and sequential recommender [C] // International Joint Conferences on Artificial Intelligence. Stockholm: IJCAI, 2018: 3350–3356.
[10]   NIU S Z, ZHANG R Z. Collaborative sequence prediction for sequential recommender [C] // Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 2239-2242.
[11]   YU F, LIU Q, WU S, et al. A dynamic recurrent model for next basket recommendation [C] // Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa: ACM, 2016: 729-732.
[12]   ZHANG Y Y, DAI H J, XU C, et al. Sequential click prediction for sponsored search with recurrent neural networks [C] // Twenty-Eighth AAAI Conference on Artificial Intelligence. Québec: AAAI, 2014.
[13]   RICCI F, ROKACH L, SHAPIRA B, et al. Introduction to recommender systems handbook [M]. Boston: Springer, 2011: 1-35.
[14]   MNIH A, SALAKHUTDINOV R R. Probabilistic matrix factorization [C] // In Advances in Neural Information Processing Systems. Vancouver: NIPS, 2008, 1257–1264.
[15]   BELL R M, KOREN Y. Scalable collaborative filtering with jointly derived neighborhood interpolation weights [C] // Seventh IEEE International Conference on Data Mining. Omaha: IEEE, 2007: 43-52.
[16]   WANG J, TANG Q. A probabilistic view of neighborhood-based recommendation methods [C] // 2016 IEEE 16th International Conference on Data Mining Workshops. Barcelona: IEEE, 2016: 14-20.
[17]   ZHAO H K, LIU Q, GE Y, et al. Group preference aggregation: a nash equilibrium approach [C] // 2016 IEEE 16th International Conference on Data Mining. Barcelona: IEEE, 2016: 679-688.
[18]   TANG J X, WANG K. Personalized top-n sequential recommendation via convolutional sequence embedding [C] // Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Los Angeles: ACM, 2018: 565-573.
[19]   HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering [C] // Proceedings of the 26th International Conference on World Wide Web. Switzerland: ACM, 2017: 173-182.
[20]   RENDLE S, FREUDENTHALER C, SCHMDITHIEME L. Factorizing personalized Markov chains for next-basket recommendation [C] // In Proceedings of the 19th international conference on World Wide Web. Raleigh: ACM, 811–820.
[21]   WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for next basket recommendation [C] // Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 403-412.
[22]   HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint, arXiv: 1511.06939, 2015.
[23]   LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation [C] // Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
[24]   DONKERS T, LOEPP B, ZIEGLER J. Sequential user-based recurrent neural network recommendations [C] // Proceedings of the Eleventh ACM Conference on Recommender Systems. Como: ACM, 2017: 152-160.
[25]   SCHUSTER M, PALIWAL K K Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45 (11): 2673- 2681
doi: 10.1109/78.650093
[26]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
[1] Zi-ye YONG,Ji-chang GUO,Chong-yi LI. weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 555-562.
[2] Xiao PAN,Yun-dan YANG,Xin YAO,Lei WU,Shu-hai WANG. Personalized potential route recommendation based on hidden Markov model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1736-1745.
[3] Chuang LIU,Jun LIANG. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1156-1163.
[4] Xiao-hu ZHAO,Liang-fei YIN,Cheng-long ZHAO. Image captioning based on global-local feature and adaptive-attention[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 126-134.
[5] GUO Bao-zhen, ZUO Wan-li, WANG Ying. Double CNN sentence classification model with attention mechanism of word embeddings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1729-1737.