Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 972-977    DOI: 10.3785/j.issn.1008-973X.2020.05.015
Earth Science     
Application of broadband parametric array in sub-bottom profile measurement
Han-yun ZHOU(),Shan-he HUANG*()
Ocean College, Zhejiang University, Zhoushan 316022, China
Download: HTML     PDF(1880KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A system design of a parametric array sub-bottom profiler was proposed to improve the detection accuracy of the broadband parametric array. Transducer array is used as the acoustic emission device, which can significantly improve the directivity of the sound and effectively suppress side lobes compared with a single transducer. The waveform and spectrum changes of the linear frequency modulation (LFM) signals before and after demodulation were compared and analyzed based on the nonlinear self-demodulation model of the parametric array. The bandwidth of the self-demodulated signal was doubled relative to its original value, and the amplitude of the high-frequency component was higher than that of the low-frequency component, which basically accorded with the growth trend of 12 dB per octave. Based on this, an improved matched filter was designed to perform pulse compression, and the spectrum correction method was introduced to countervail spectrum change. Simulation shows that the transducer array has high directivity and ensures the high directivity of the self-demodulated signal due to the fact that the self-demodulated signal has the same directivity with the primary frequency signal. The improved pulse compression technique can further improve the detection resolution by selecting appropriate bandwidth of LFM signal. The resolution is up to 7.5 cm, enabling high-precision sub-bottom profile measurement.



Key wordsbroadband parametric array      sub-bottom profile measurement      directivity      linear frequency modulation signal      pulse compression     
Received: 19 April 2019      Published: 05 May 2020
CLC:  TB 566  
Corresponding Authors: Shan-he HUANG     E-mail: 11634017@zju.edu.cn;davidhuang@zju.edu.cn
Cite this article:

Han-yun ZHOU,Shan-he HUANG. Application of broadband parametric array in sub-bottom profile measurement. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 972-977.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.015     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/972


宽带参量阵在浅地层剖面测量中的应用

为了提高宽带参量阵的探测精度,提出参量阵浅地层剖面仪的系统设计. 以换能器阵列作为声发射装置,相较单个换能器能显著提高声源的指向性,有效抑制旁瓣. 利用参量阵的非线性自解调模型,对比分析线性调频信号自解调前、后的波形与频谱变化,分析得出自解调信号的频宽扩展为原信号的2倍,且带宽内信号幅值满足每倍频程12 dB的增长态势. 据此设计改进匹配滤波器来进行脉冲压缩,并通过频谱修正来抑制频谱变化. 仿真结果表明,该宽带参量阵的换能器阵列具有较好的指向性,根据自解调信号和原频信号同指向性的原理,保证自解调信号的高指向性. 提出的改进脉冲压缩技术能进一步提高探测分辨率,通过选择合适的调频范围,距离分辨率可以达到7.5 cm,可以实现高精度的海底地层探测.


关键词: 宽带参量阵,  地层探测,  指向性,  线性调频信号,  脉冲压缩 
Fig.1 System configuration of parametric array sub-bottom profiler
Fig.2 Directivity of transducer element
Fig.3 Directivity of 5×5 transducer array
Fig.4 Comparison of LFM and PALFM in time domain
Fig.5 Comparison of LFM and PALFM in frequency domain
Fig.6 Pulse compression output of ordinary matched filter
Fig.7 Comparison of pulse compression outputs of ordinary matched filter and modified matched filter
Fig.8 Spectrum comparison before and after spectrum correction
Fig.9 Pulse compression output for PALFM after spectral correction
Fig.10 Simulated echo signal
Fig.11 Sub-bottom profile measurement with modified matched filter
Fig.12 Cross-correlation result of PALFM and echo signal
Fig.13 Comparison of pulse compression outputs of PALFM with different bandwidths
[1]   WESTERVELT P J Parametric acoustic array[J]. Journal of the Acoustical Society of America, 1963, 35 (4): 535- 537
doi: 10.1121/1.1918525
[2]   BERKTAY H O Possible exploitation of non-linear acoustics in underwater transmitting applications[J]. Journal of Sound and Vibration, 1965, 2 (4): 435- 461
doi: 10.1016/0022-460X(65)90122-7
[3]   WOODWARD B, COOK J C, GOODSON A D, et al. A phase steered parametric array for sub-bottom profiling [C]// International Conference on Electronic Engineering in Oceanography. Cambridge : IET, 1994: 77-82.
[4]   BOULINGUEZ D, ANDRé Q 3-D Underwater object recognition[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (4): 814- 829
doi: 10.1109/JOE.2002.805097
[5]   SALEH M, RABAH M Seabed sub-bottom sediment classification using parametric sub-bottom profiler[J]. NRIAG Journal of Astronomy and Geophysics, 2016, 5 (1): 87- 95
doi: 10.1016/j.nrjag.2016.01.004
[6]   张兆富 SES-96参量阵测深/浅地层剖面仪的特点及其应用[J]. 中国港湾建设, 2001, (3): 41- 44
ZHANG Zhao-fu Characteristics and use of SES-96 parametric sounding and sub-bottom profiling system[J]. China Harbour Engineering, 2001, (3): 41- 44
doi: 10.3969/j.issn.1003-3688.2001.03.012
[7]   褚宏宪, 赵铁虎, 史慧杰, 等 参量阵浅地层剖面测量技术在近岸海洋工程的应用效果[J]. 物探与化探, 2005, 29 (6): 526- 529
CHU Hong-xian, ZHAO Tie-hu, SHI Hui-jie, et al The efficiency evaluation of non-linear (parametric) sonar system application in sea engineering investigation[J]. Geophysical and Geochemical Exploration, 2005, 29 (6): 526- 529
doi: 10.3969/j.issn.1000-8918.2005.06.013
[8]   PLETS R M K, DIX J K, ADAMS J R, et al The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK[J]. Journal of Archaeological Science, 2009, 36 (2): 408- 418
doi: 10.1016/j.jas.2008.09.026
[9]   胡爱明, 胡可欣 线性调频信号在雷达中的应用[J]. 航天电子对抗, 2006, 22 (5): 54- 57
HU Ai-ming, HU Ke-xin Application of chirp signal in radar[J]. Aerospace Electronic Warfare, 2006, 22 (5): 54- 57
doi: 10.3969/j.issn.1673-2421.2006.05.017
[10]   郑力文, 孙晓乐 线性调频信号数字脉冲压缩技术分析[J]. 现代电子技术, 2011, 34 (1): 39- 42
ZHENG Li-wen, SUN Xiao-le Digital pulse compression technology of linear frequency modulation signal[J]. Modern Electronics Technique, 2011, 34 (1): 39- 42
doi: 10.3969/j.issn.1004-373X.2011.01.013
[11]   李颂文 参量阵及其在水声工程中的应用进展[J]. 声学技术, 2011, 30 (1): 9- 16
LI Song-wen Parametric array and its application in underwater acoustic engineering: an overview[J]. Technical Acoustics, 2011, 30 (1): 9- 16
doi: 10.3969/j.issn1000-3630.2011.01.002
[12]   张富东, 周代英, 陈敏, 等 宽带水声参量阵指向性设计与实验验证[J]. 声学技术, 2011, 30 (2): 140- 143
ZHANG Fu-dong, ZHOU Dai-ying, CHEN Min, et al Directivity design and experimental verification of underwater broadband acoustic parametric array[J]. Technical Acoustics, 2011, 30 (2): 140- 143
doi: 10.3969/j.issn1000-3630.2011.02.006
[13]   周荣冠 参量阵扬声器系统的超声发射阵指向性研究[J]. 电声技术, 2009, 33 (4): 33- 36
ZHOU Rong-guan Research on directivity of ultrasonic emitter for parametric array loudspeaker system[J]. Audio Engineering, 2009, 33 (4): 33- 36
doi: 10.3969/j.issn.1002-8684.2009.04.007
[14]   孙娜, 钱枫, 刘晓宙 Simulink仿真实现声参量阵系统中信号调制[J]. 南京大学学报: 自然科学, 2015, (Suppl.1): 1- 5
SUN Na, QIAN Feng, LIU Xiao-zhou Study of signal processing in parametric acoustic array based on Simulink[J]. Journal of Nanjing University: Natural Sciences, 2015, (Suppl.1): 1- 5
[15]   GAN W S, YANG J, KAMAKURA T A review of parametric acoustic array in air[J]. Applied Acoustics, 2012, 73 (12): 1211- 1219
doi: 10.1016/j.apacoust.2012.04.001
[16]   聂新华. 声学参量阵及其测试技术研究[D]. 长沙: 国防科学技术大学, 2009.
NIE Xin-hua. Research on acoustic parametric array and test technology [D]. Changsha: Graduate School of National University of Defense Technology, 2009.
[17]   刘健康, 王莉, 鲁五一, 等 影响超声换能器阵指向性的几个关键因素研究[J]. 压电与声光, 2013, 35 (4): 564- 567
LIU Jian-kang, WANG Li, LU Wu-yi, et al Study on several key factors of fluencing the directivity of ultrasonic transducer array[J]. Piezoelectrics and Acoustooptics, 2013, 35 (4): 564- 567
doi: 10.3969/j.issn.1004-2474.2013.04.025
[1] Bo PANG,Shi-zheng ZHU,Jing-feng BAI,Xiang JI. Measurement technique of high-intensity focused ultrasound driving power based on power coupler and detector[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1630-1636.