Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (3): 574-580    DOI: 10.3785/j.issn.1008-973X.2020.03.018
Aerospace Technology     
Active-passive joint measurement and evaluation method for precision of noise test system
Yi-fan GU(),Li-ping WANG,Xu DING,Zhi-yu WANG*(),Jiong-jiong MO,Fa-xin YU
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1138KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The gain of the device under test was increased by setting an active gain device behind a passive device, which suppressed the influence of system non-zero error on the noise test results. Combining the twice noise test results of a single active device and a cascaded active-passive device, the characterization parameter of the measurement and evaluation precision of the system was converted from the noise figure into the insertion loss of the cascaded passive device by employing the noise figure direct-subtraction method. Also, the accuracy of the noise test system was quantitatively evaluated by using the insertion loss test value based on vector network analyzer with higher insertion loss measurement accuracy as a reference. The comparison verification test with the traditional passive measurement evaluation method show that, by the proposed method, the evaluation precision of noise test system based on the Y-factor method was –0.5~0.5 dB in the frequency band of 2~40 GHz, while the evaluation precision of noise test system based on the vector cold source method was –0.3~0.3 dB; the range of evaluation precision fluctuation is less than two times the test uncertainty of the system under test, which is much lower than the fluctuation range of being more than six times the uncertainty by the traditional passive measurement evaluation method.



Key wordsnoise test system      non-zero error      active-passive joint measurement      noise figure direct-subtraction method      evaluation precision     
Received: 23 April 2019      Published: 05 March 2020
CLC:  TN 407  
Corresponding Authors: Zhi-yu WANG     E-mail: yfgu@zju.edu.cn;zywang@zju.edu.cn
Cite this article:

Yi-fan GU,Li-ping WANG,Xu DING,Zhi-yu WANG,Jiong-jiong MO,Fa-xin YU. Active-passive joint measurement and evaluation method for precision of noise test system. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 574-580.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.03.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I3/574


噪声测试系统精度有源-无源联合测量评估方法

通过在无源器件后置有源增益器件提高被测件整体的增益,抑制系统中非零误差对噪声测试结果的影响;结合单一有源器件及级联有源-无源器件的2次噪声测试结果,采用噪声系数直减法,将系统测量评估精度的表征参数由噪声系数转化为级联无源器件的插损值;并以具有更高插损测量精度的矢量网络分析仪插损测试结果作为参考基准,定量评估噪声测试系统的精度. 经与传统无源测量评估方法的实测对比验证得,在2~40 GHz频段内,所提方法对基于Y因子法的噪声测试系统的评估精度为–0.5~0.5 dB,对基于矢量冷源法的噪声测试系统的评估精度为–0.3~0.3 dB,评估精度波动范围均小于被测系统的2倍测试不确定度,较传统无源测量评估方法评估精度提升了3倍以上.


关键词: 噪声测试系统,  非零误差,  有源-无源联合测量,  噪声系数直减法,  评估精度 
Fig.1 Noise figure of 6 dB attenuator and insertion loss test results
Fig.2 Non-zero error phenomenon of noise measurement system
Fig.3 Non-zero error under different noise receivers
Fig.4 Noise figure of 6 dB attenuator under different noise receivers
Fig.5 Noise figure of low noise amplifier (LNA) under different gains
Fig.6 Schematic diagram of data acquisition systems for active-passive joint measurement and evaluation method
ΔNtotal/dB ΔNLNA/dB ΔLatt/dB Natt*/dB
–0.1 –0.1 –0.1 6.28
–0.1 –0.1 0 6.00
–0.1 –0.1 0.1 5.70
–0.1 0 –0.1 5.90
–0.1 0 0 5.59
–0.1 0 0.1 5.24
–0.1 0.1 –0.1 5.48
–0.1 0.1 0 5.12
–0.1 0.1 0.1 4.72
0 –0.1 –0.1 6.63
0 –0.1 0 6.38
0 –0.1 0.1 6.10
0 0 –0.1 6.29
0 0 0 6.00
0 0 0.1 5.69
0 0.1 –0.1 5.90
0 0.1 0 5.58
0 0.1 0.1 5.22
0.1 –0.1 –0.1 6.97
0.1 –0.1 0 6.73
0.1 –0.1 0.1 6.48
0.1 0 –0.1 6.65
0.1 0 0 6.39
0.1 0 0.1 6.10
0.1 0.1 –0.1 6.29
0.1 0.1 0 6.00
0.1 0.1 0.1 5.68
Tab.1 Calculation values for noise figure of 6 dB attenuator
条件 说明
环境温度 295 K
湿度 46%
洁净度 Class 1000
电磁屏蔽环境 DC-40 GHz
测试仪器 Keysight? NFA N8976B(10 MHz~40 GHz NFA)
Keysight? PNAX N5244A with Opt.029
(10 MHz~43.5 GHz VNA)
测试附件 Gore? OKO(DC-40 GHz射频缆线)
Maury? CAL KIT 8770E(2.92 mm同轴校准件)
Keysight? U2022XA(50 MHz~40 GHz功率计)
Keysight? 346CK01(1~50 GHz噪声源)
Keysight? 11904B(2.4 mm/2.92 mm转接头)
被测件 Keysight? U7227F(2~50 GHz LNA)
Weinschel? 54A-6(衰减器)
Tab.2 Instruments and test conditions used in data acquisition system
Fig.7 Physical map of data acquisition systems for active-passive joint measurement and evaluation method
Fig.8 Comparison of evaluation precision between traditional passive method and active-passive joint method for noise test system
Fig.9 Precision of active-passive joint measurement and evaluation method for different noise test systems
[1]   KEYSIGHT TECHNOLOGIES. Noise figure measurement accuracy: the Y-factor method [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5952-3706E.pdf?id=1000000179:epsg:apn.
[2]   KEYSIGHT TECHNOLOGIES. Fundamentals of RF and microwave noise figure measurements [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5952-8255E.pdf?id=1000001634:epsg:apn.
[3]   KEYSIGHT TECHNOLOGIES. NFA X-series noise figure analyzer: multi-touch N8973B, N8974B, N8975B, N8976B [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5992-1270EN.pdf?id=2702444.
[4]   DUNSMORE J P. Handbook of microwave component measurements with advanced VNA techniques[M]. Hoboken: JOHN WILEY & SONS Inc, 2012.
[5]   KEYSIGHT TECHNOLOGIES. High-accuracy noise figure measurements using the PNA-X series network analyzer [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5990-5800EN.pdf?id=1961132.
[6]   DUNSMORE J, FELLOW K. Noise figure verification of Y-factor and cold source methods [C] // International Conference on Noise and Fluctuations. Vilnius: IEEE, 2017: 1-4.
[7]   DUNSMORE J, WOOD S. Vector corrected noise figure and noise parameter measurements of differential amplifiers [C] // Microwave Conference. Rome: IEEE, 2009: 707-710.
[8]   KELLOGG K, DUNLEAVY L, SNIDER A D. Temperature dependent noise system verification and the relationship of passive noise parameters to available gain calculations [C] // 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON). Key: IEEE, 2018: 1-4.
[9]   KELLOGG K, DUNLEAVY L, SKIDMORE S, et al. The impact of ENR and coaxial calibration in accurate on-wafer noise parameter testing for ultra-low noise devices [C] // 201688th ARFTG Microwave Measurement Conference (ARFTG). Austin: IEEE, 2016: 1-4.
[10]   RANDA J Uncertainty analysis for noise-parameter measurements at NIST[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58 (4): 1146- 1151
doi: 10.1109/TIM.2008.2007044
[11]   HSIAO H F, TU C H, CHANG D C, et al. Noise figure verification using cold-Source and Y-factor technique for amplifier and down-converted mixer [C] // Microwave Conference. Sendai: IEEE, 2014: 901-903.
[12]   BELOSTOTSKI L, HASLETT J W Evaluation of tuner-based noise-parameter extraction methods for very low noise amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58 (1): 236- 250
doi: 10.1109/TMTT.2009.2036411
[13]   GU D, RANDA J, BILLINGER R, et al. A verification method for noise-temperature measurements on cryogenic low-noise amplifiers [C] // 2012 Conference on Precision electromagnetic Measurements. Washington DC: IEEE, 2012: 32-33.
[14]   WU A, LI C, SUN J, et al. Development of a verification technique for on-wafer noise figure measurement systems [C] // 2017 90th ARFTG Microwave Measurement Symposium (ARFTG). Boulder: IEEE, 2017: 1-4.
[15]   WONG K, POLLARD R, SHOULDERS B, et al. Using a mismatch transmission line to verify accuracy of a high performance noise figure measurement system [C] // 2007 69th ARFTG Conference. Honolulu: IEEE, 2007: 1-5.
[16]   RANDA J, DUNSMORE J, GU D, et al Verification of noise-parameter measurements and uncertainties[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (11): 3685- 3693
doi: 10.1109/TIM.2011.2138270
[17]   KEYSIGHT TECHNOLOGIES. Non-zero noise figureafter calibration [EB/OL]. [2019-04-10]. https://literature.cdn.keysight.com/litweb/pdf/5989-0270EN.pdf?id=405518.
[18]   WIATR W, WALKER D Systematic errors of noise parameter determination caused by imperfect source impedance measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54 (2): 696- 700
doi: 10.1109/TIM.2005.843534
[19]   SEELMANN-EGGEBERT M, BALDISCHWEILER B, AJA B, et al. Figures of uncertainty for noise measurements [C] // 81st ARFTG Microwave Measurement Conference. Seattle: IEEE, 2013: 1-4.
[20]   RUDOLPH M, HEYMANN P, BOSS H Impact of receiver bandwidth and nonlinearity on noise measurement methods[J]. IEEE Microwave Magazine, 2010, 11 (6): 110- 121
doi: 10.1109/MMM.2010.937715
[21]   KEYSIGHT TECHNOLOGIES. Noise figure uncertainty [EB/OL]. [2019-04-10]. http://rfmw.em.keysight.com/NFUcalc.
No related articles found!