Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (11): 2201-2209    DOI: 10.3785/j.issn.1008-973X.2018.11.019
Electrical Engineering     
Switch control method based on switch table decision of hybrid system composed of APF and TSC
SU Zi-peng, YANG Lei, YANG Jia-qiang, GAO Min
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(2078KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hybrid system composed of active power filter (APF) and multi-group thyristor switched capacitor (TSC) was designed to compensate harmonic current and reactive power, which threatened the safety and stabilization of power system, in grid precisely and continuously. Considering the characteristics of symmetrical loads, the frequency-dividing current control method was used to compensate harmonic and reactive current at high precision, by choosing independent PI or PR controller according to the frequency and property. A switch control method based on switch table decision was proposed to execute precise prediction and switch using switch tables, load current rate and zero-cross detection without adding sensors of load current, so that the problems such as poor dynamic response and disordered switch of TSC in conventional method using a fixed time delay could be solved effectively. A 37 kV·A prototype was developed for the experiment. Comparison between the proposed switch control method and conventional method showed that the proposed method had both good static and dynamic response under different loads.



Received: 12 March 2018      Published: 22 November 2018
CLC:  TM464  
Cite this article:

SU Zi-peng, YANG Lei, YANG Jia-qiang, GAO Min. Switch control method based on switch table decision of hybrid system composed of APF and TSC. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2201-2209.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.11.019     OR     http://www.zjujournals.com/eng/Y2018/V52/I11/2201


基于开关表决策的APF与TSC混合系统投切控制方法

针对谐波电流和无功功率威胁电网安全稳定运行的问题,设计基于有源电力滤波器(APF)和多组晶闸管投切电容器(TSC)的混合系统,连续精确补偿电网中的谐波电流和无功功率.针对三相对称型负载的特点,设计电流分频控制方法,按照电流的频率和性质选用独立的PI或PR控制器,达到较高的控制精度.提出基于开关表决策的投切控制方法,在不增加负载电流传感器的条件下,运用多种开关表切换、电流变化率阈值设置和过零检测等手段,混合系统快速精确地预测和投切,有效解决传统固定延时投切方法中暂态响应差、TSC混乱投切等问题.研制37 kV·A样机进行实验,对比基于开关表决策的投切控制方法与传统固定延时投切的实验结果,验证控制方法的有效性.结果表明,基于开关表决策的投切控制方法在不同负载条件下均能获得较好的稳态和暂态特性.

[1] 王兆安, 杨君, 刘进军, 等. 谐波抑制和无功功率补偿[M]. 2版. 北京:机械工业出版社, 2005:220-226.
[2] 曾争. 基于LCL滤波的并联有源电力滤波器关键技术研究[D]. 杭州:浙江大学, 2015:2-5. ZENG Zheng. Research on key techniques of shunt active power filter with LCL-filter[D]. Hangzhou:Zhejiang University, 2015:2-5.
[3] 钱照明, 叶忠明. 谐波抑制技术[J]. 电力系统自动化, 1997, 21(10):48-54 QIAN Zhao-ming, YE Zhong-ming. Harmonic suppression technology[J]. Automation of Electric Power Systems, 1997, 21(10):48-54
[4] 涂春鸣, 罗安, 刘娟. 无源滤波器的多目标优化设计[J]. 中国电机工程学报, 2002, 22(3):18-22 TU Chun-ming, LUO An, LIU Juan. Multi-objective optimal design of passive power filters[J]. Proceedings of the CSEE, 2002, 22(3):18-22
[5] 肖遥, 尚春, 林志波. 低损耗多调谐无源滤波器[J]. 电力系统自动化, 2006, 30(19):69-72 XIAO Yao, SHANG Chun, LIN Zhi-bo. Multi-tuning passive filters with less power loss[J]. Automation of Electric Power Systems, 2006, 30(19):69-72
[6] AKAGI H. Active harmonic filters[J]. Proceedings of the IEEE, 2005, 93(12):2128-2141.
[7] 彭海燕, 王宏. 有源电力滤波器的原理介绍及应用[J]. 华北电力技术, 2010, 357(1):35-37 PENG Hai-yan, WANG Hong. Working principle of active power filter and its application[J]. North China Electric Power, 2010, 357(1):35-37
[8] 陈国柱, 吕征宇, 钱照明. 有源电力滤波器的一般原理及应用[J]. 中国电机工程学报, 2000, 20(9):18-22 CHEN Guo-zhu, LV Zheng-yu, QIAN Zhao-ming. The general principle of active filter and its application[J]. Proceedings of the CSEE, 2000, 20(9):18-22
[9] MATTAVELLI P. A closed-loop selective harmonic compensation for active filters[J]. IEEE Transactions on Industry Applications, 2000, 37(1):81-89.
[10] 戴晓亮. 无功补偿技术在配电网中的应用[J]. 电网技术, 1999, 23(6):11-14 DAI Xiao-liang. Application of reactive compensation technology for distribution system[J]. Power System Technology, 1999, 23(6):11-14
[11] 巩庆. 晶闸管投切电容器动态无功补偿技术及其应用[J]. 电网技术, 2007, 31(增2):118-122 GONG Qing. Thyristor switched capacitor dynamic var compensation technology and its application[J]. Power System Technology, 2007, 31(Suppl.2):118-122
[12] ZHU N, VADARI S, HWANG D. Analysis of a static var compensator using the dispatcher training simulator[J]. IEEE Transactions on Power Systems, 1995, 10(3):1234-1242.
[13] RIZY D T, GUNTHER E W, MCGRANAGHAN M F. Transient and harmonic voltages associated with automated capacitor switching on distribution systems[J]. IEEE Transactions on Power Systems, 1986, 2(3):713-723.
[14] GUO W, XU D, WU J, et al. United system of TSC and SVG for reactive power compensation[C]//IEEE International Symposium on Power Electronics for Distributed Generation Systems. Hefei:IEEE, 2010:507-511.
[15] LUO A, SHUAI Z, ZHU W, et al. Combined system for harmonic suppression and reactive power compensation[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2):418-428.
[16] 郭伟峰. APF与TSC谐波无功综合补偿控制的研究[D]. 哈尔滨:哈尔滨工业大学, 2011:40-43. GUO Wei-feng. Research on control of APF and TSC harmonic and reactive power synthesis compensation system[D]. Harbin:Harbin Institute of Technology, 2011:40-43.
[17] 杨家强, 陈诗澜, 朱洁, 等. APF与TSC混合补偿装置控制策略设计[J]. 电机与控制学报, 2014, 18(1):11-18 YANG Jia-qiang, CHEN Shi-lan, ZHU Jie, et al. The control strategy designing of hybrid compensator based on APF and TSC[J]. Electric Machines and Control, 2014, 18(1):11-18
[18] 陆平, 康巧萍. 并联电容器装置串联电抗器的电抗率及容量选择[J]. 电力建设, 2007, 28(2):70-72 LU Ping, KANG Qiao-ping. Reactance and capacity selection for series reactors in shunt capacitors[J]. Electirc Power Construction, 2007, 28(2):70-72

[1] LI Xin, XIAO Long, LIU Guo-liang, SHAO Yu-ting, CHEN Guo-zhu. VSG power oscillation suppression strategies based on phase compensation and cross feedforward compensation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 569-576.
[2] YUAN Qing-wei, ZHAO Rong-xiang. Common-mode voltage suppression algorithm for three-phase PWM inverter in consideration of dead-band[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2276-2286.