Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (8): 1616-1623    DOI: 10.3785/j.issn.1008-973X.2018.08.022
Materials and Environmental Engineering     
Experiment of application of Penicillium oxalicum SL2 in Cr(VI) removal from high-salinity electroplating wastewater
LONG Bi-bo, YE Bin-hui, LIU Qing-lin, LUO Ya-ting, SHI Ji-yan
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download:   PDF(629KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore the potential application in Cr(VI) removal of Penicillium oxalicum SL2 from polluted environment, the effect of salinity on SL2 growth was analyzed by using the Gompertz model, the effect of salinity on Cr(VI) removal ability of SL2 was investigated by using a shaker test, and the ability of SL2 to remove Cr(VI) from actual electroplating wastewater was also tested. The relative maximum colony diameter and the maximum growth rate of SL2 in potato dextrose agar medium with 100 mg/L NaCl decreased by 19.1% and 57.8% respectively, when compared with the parameters of SL2 in medium without NaCl. However, the Cr(VI) removal ability of SL2 was not significantly inhibited. SL2 showed the ability to remove 102.2 mg/L Cr(VI) from the actual electroplating wastewater in 6 days by uptake and reduction. Cr uptake by SL2 was 9.09 mg/g dry biomass, which took up 9.9% of the amount of Cr in in the wastewater. The results suggest SL2 has the potential to deal with Cr(VI) pollution in the high-salinity electroplating wastewater, which provides references for Cr(VI) removal in practice.



Received: 02 August 2017      Published: 23 August 2018
CLC:  X781  
Cite this article:

LONG Bi-bo, YE Bin-hui, LIU Qing-lin, LUO Ya-ting, SHI Ji-yan. Experiment of application of Penicillium oxalicum SL2 in Cr(VI) removal from high-salinity electroplating wastewater. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1616-1623.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.08.022     OR     http://www.zjujournals.com/eng/Y2018/V52/I8/1616


草酸青霉SL2处理高盐含Cr(VI)电镀废水的试验研究

为探究草酸青霉(Penicillium oxalicum) SL2处理环境中Cr (VI)污染的潜力,利用Gompertz模型分析盐度对SL2生长的影响,通过摇瓶试验研究盐度对SL2处理Cr (VI)的影响,并考察SL2清除实际电镀废水中Cr (VI)的能力.与未添加NaCl的对照组相比,在添加100 g/L NaCl的土豆培养基中生长的SL2菌斑最大直径和最大生长速率分别降低19.1%和57.8%,延滞时间增加110.1%,但SL2处理Cr (VI)的能力没有受到显著抑制.在实际电镀废水中,SL2能通过吸附累积和还原作用在6 d内清除102.2 mg/L的Cr (VI),每克菌丝体吸附累积铬元素9.09 mg,吸附累积量占电镀废水中铬元素总量的9.9%.研究表明,SL2具有处理高盐电镀废水中Cr (VI)污染的潜力,研究结果可为实际应用提供参考依据.

[1] SCARAZZATO T, PANOSSIAN Z, TEN RIO J A S, et al. A review of cleaner production in electroplating industries using electrodialysis[J]. Journal of Cleaner Production, 2017, 168(Suppl. C):1590-1602.
[2] MISHRA S, BHARAGAVA R N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies[J]. Journal of Environmental Science and Health, Part C:Environmental Carcinogenesis and Ecotoxicology Reviews, 2016, 34(1):1-32.
[3] WISE S S, XIE H, FUKUDA T, et al. Hexavalent chromium is cytotoxic and genotoxic to Hawksbill sea turtle cells[J]. Toxicology and Applied Pharmacology, 2014, 279(2):113-118.
[4] DUBE D, NYONI B. Removal of chromium and nickel from electroplating wastewater using magnetite particulate adsorbent:(1) effect of pH, contact time and dosage, (2) adsorption isotherms and kinetics[J]. Modern Applied Science, 2016, 10(7):222-232.
[5] RAHMAN M L, SARKAR S M, YUSOFF M M. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Frontiers of Environmental Science and Engineering, 2016, 10(2):352-361.
[6] 聂鑫蕊. 电镀废水处理方法的研究进展[J]. 电镀与环保, 2016, 36(4):1-3 NIE Xin-rui. Research progress of electroplating wastewater treatment method[J]. Electroplating and Pollution Control, 2016, 36(4):1-3
[7] KALIDHASAN S, KUMAR A S K, RAJESH V, et al. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives: a perspective[J]. Coordination Chemistry Reviews, 2016, 317:157-166.
[8] 王文琪. 化学法处理电镀废水的研究进展[J]. 电镀与环保, 2017, 37(2):1-4 WANG Wen-qi. Research progress on treatment of electroplating wastewater by chemical method[J]. Electroplating and Pollution Control, 2017, 37(2):1-4
[9] KUMAR R, BISHNOI N R, GARIMA, et al. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass[J]. Chemical Engineering Journal, 2008, 135(3):202-208.
[10] ROMANENKO V I, KOREN'KOV V N. Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions[J]. Mikrobiologiia, 1977, 46(3):414-417.
[11] SHARMA S, MALAVIYA P. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium[J]. Ecological Engineering, 2016, 91:419-425.
[12] ZHENG Z, LI Y, ZHANG X, et al. A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved[J]. International Biodeterioration and Biodegradation, 2015, 97:90-96.
[13] BADAR U, AHMED N, BESWICK A J, et al. Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan[J]. Biotechnology Letters, 2000, 22(10):829-836.
[14] WEI-HUA X U, LIU Y G, ZENG G M, et al. Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5):1336-1341.
[15] SARANGI A, KRISHNAN C. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil[J]. Bioresource Technology, 2008, 99(10):4130-4137.
[16] PEI Q H, SHAHIR S, RAJ A S S, et al. Chromium(VI) resistance and removal by Acinetobacter haemolyticus[J]. World Journal of Microbiology and Biotechnology, 2009, 25(6):1085-1093.
[17] HUANG Y, FENG H, LU H, et al. A thorough survey for Cr-resistant and/or -reducing bacteria identified comprehensive and pivotal taxa[J]. International Biodeterioration and Biodegradation, 2017, 117:22-30.
[18] CHAI L, HUANG S, YANG Z, et al. Cr(VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag[J]. Journal of Hazardous Materials, 2009, 167(1-3):516-522.
[19] HUANG T P, XIAO Y, PAN J R, et al. Aerobic Cr(VI) reduction by an indigenous soil isolate Bacillus thuringiensis BRC-ZYR2[J]. Pedosphere, 2014, 24(5):652-661.
[20] LEE S E, LEE J U, CHON H T, et al. Reduction of Cr(VI) by indigenous bacteria in Cr-contaminated sediment under aerobic condition[J]. Journal of Geochemical Exploration, 2008, 96(2/3):144-147.
[21] 李凤娟, 徐菲, 李小龙, 等. 高盐度废水处理技术研究进展[J]. 环境科学与管理, 2014(2):72-75 LI Feng-juan, XU Fei, LI Xiao-long, et al. Research on treatment of high salinity wastewater[J]. Environmental Science and Management, 2014(2):72-75
[22] IBRAHIM A S S, EL-TAYEB M A, ELBADAWI Y B, et al. Bioreduction of Cr(VI) by potent novel chromate resistant alkaliphilic Bacillus sp strain KSUCr5 isolated from hypersaline Soda lakes[J]. African Journal of Biotechnology, 2011, 10(37):7207-7218.
[23] 龙腾发, 柴立元, 傅海洋. 碱性介质中还原高浓度Cr(VI)细菌的分离及其特性[J]. 应用与环境生物学报, 2006, 12(1):80-83 LONG Teng-fa, CHAI Li-yuan, FU Hai-yang. Isolation and characteristics of bacteria reducing high concentration of Cr(VI) in alkaline solution[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(1):80-83
[24] AMOOZEGAR M A, GHASEMI A, RAZAVI M R, et al. Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp strain MF2[J]. Process Biochemistry, 2007, 42(10):1475-1479.
[25] 施积炎, 龙碧波, 叶斌, 等. 还原六价铬的草酸青霉及其筛选方法:201510017900.1[P]. 2015-01-14
[26] ANAHID S, YAGHMAEI S, GHOBADINEJAD Z. Heavy metal tolerance of fungi[J]. Scientia Iranica, 2011, 18(3):502-508.
[27] ZWIETERING M H, JONGENBURGER I, ROMBOUTS F M, et al. Modeling of the bacterial-growth curve[J]. Applied and Environmental Microbiology, 1990, 56(6):1875-1881.
[28] SHOAIB M, SHAMSELDIN A Y, MELVILLE B W. Comparative study of different wavelet based neural network models for rainfall-runoff modeling[J]. Journal of Hydrology, 2014, 515:47-58.
[29] LONG D Y, TANG X J, CAI K et al. Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10[J]. Journal of Hazardous Materials, 2013, 256:24-32.
[30] ACEVEDO-AGUILAR F J, ESPINO-SALDANA A E, LEON-RODRIGUEZ I L, et al. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes[J]. Canadian Journal of Microbiology, 2006, 52(9):809-815.
[31] MUNOZ A H S, CORONA F G, WROBEL K, et al. Subcellular distribution of aluminum, bismuth, cadmium, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus)[J]. Biological Trace Element Research, 2005, 106(3):265-277.
[32] MARGESIN R, SCHINNER F. Potential of halotolerant and halophilic microorganisms for biotechnology[J]. Extremophiles, 2001, 5(2):73-83.
[33] DENG X H, CHAI L Y, YANG Z H, et al. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1[J]. Journal of Hazardous Materials, 2013, 248:107-114.
[34] RIEDEL G F. Influence of salinity and sulfate on the toxicity of chromium(VI) to the estuarine diatom Thalassiosira-Pseudonana[J]. Journal of Phycology, 1984, 20(4):496-500.
[35] RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium:a review[J]. Water Research, 1991, 25(7):807-816.
[36] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:a review[J]. Journal of Hazardous Materials, 2013, 250:272-291.
[37] MANGAIYARKARASI M S, VINCENT S, JANARTHANAN S, et al. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups[J]. Saudi Journal of Biological Sciences, 2011, 18(2):157-167.
[38] ASATIANI N V, ABULADZE M K, KARTVELISHVILI T M et al. Effect of chromium(VI) action on Arthrobacter oxydans[J]. Current Microbiology, 2004, 49(5):321-326.
[39] DELEO P C, EHRLICH H L. Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous cultures[J]. Applied Microbiology and Biotechnology, 1994, 40(5):756-759.
[40] CORENO-ALONSO A, ACEVEDO-AGUILAR F J, REYNA-LOPEZ G E, et al. Cr(VI) reduction by an Aspergillus tubingensis strain:role of carboxylic acids and implications for natural attenuation and biotreatment of Cr(VI) contamination[J]. Chemosphere, 2009, 76(1):43-47.
[41] CHIRWA E N, WANG Y T. Simultaneous chromium(VI) reduction and phenol degradation in an anaerobic consortium of bacteria[J]. Water Research, 2000, 34(8):2376-2384.
[42] DONMEZ G, AKSU Z. Bioaccumulation of copper(Ⅱ) and nickel(Ⅱ) by the non-adapted and adapted growing Candida sp.[J]. Water Research, 2001, 35(6):1425-1434.
[43] CORENO-ALONSO A, SOLE A, DIESTRA E, et al. Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8[J]. Bioresource Technology, 2014, 158:188-192.
[44] PECHOVA A, PAVLATA L. Chromium as an essential nutrient:a review[J]. Veterinarni Medicina, 2007, 52(1):1-18.
[45] VARADHARAJAN C, BELLER H R, BILL M et al. Reoxidation of chromium(Ⅲ) products formed under different biogeochemical regimes[J]. Environmental Science and Technology, 2017, 51(9):4918-4927.

No related articles found!