[1] SCARAZZATO T, PANOSSIAN Z, TEN RIO J A S, et al. A review of cleaner production in electroplating industries using electrodialysis[J]. Journal of Cleaner Production, 2017, 168(Suppl. C):1590-1602.
[2] MISHRA S, BHARAGAVA R N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies[J]. Journal of Environmental Science and Health, Part C:Environmental Carcinogenesis and Ecotoxicology Reviews, 2016, 34(1):1-32.
[3] WISE S S, XIE H, FUKUDA T, et al. Hexavalent chromium is cytotoxic and genotoxic to Hawksbill sea turtle cells[J]. Toxicology and Applied Pharmacology, 2014, 279(2):113-118.
[4] DUBE D, NYONI B. Removal of chromium and nickel from electroplating wastewater using magnetite particulate adsorbent:(1) effect of pH, contact time and dosage, (2) adsorption isotherms and kinetics[J]. Modern Applied Science, 2016, 10(7):222-232.
[5] RAHMAN M L, SARKAR S M, YUSOFF M M. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Frontiers of Environmental Science and Engineering, 2016, 10(2):352-361.
[6] 聂鑫蕊. 电镀废水处理方法的研究进展[J]. 电镀与环保, 2016, 36(4):1-3 NIE Xin-rui. Research progress of electroplating wastewater treatment method[J]. Electroplating and Pollution Control, 2016, 36(4):1-3
[7] KALIDHASAN S, KUMAR A S K, RAJESH V, et al. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives: a perspective[J]. Coordination Chemistry Reviews, 2016, 317:157-166.
[8] 王文琪. 化学法处理电镀废水的研究进展[J]. 电镀与环保, 2017, 37(2):1-4 WANG Wen-qi. Research progress on treatment of electroplating wastewater by chemical method[J]. Electroplating and Pollution Control, 2017, 37(2):1-4
[9] KUMAR R, BISHNOI N R, GARIMA, et al. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass[J]. Chemical Engineering Journal, 2008, 135(3):202-208.
[10] ROMANENKO V I, KOREN'KOV V N. Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions[J]. Mikrobiologiia, 1977, 46(3):414-417.
[11] SHARMA S, MALAVIYA P. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium[J]. Ecological Engineering, 2016, 91:419-425.
[12] ZHENG Z, LI Y, ZHANG X, et al. A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved[J]. International Biodeterioration and Biodegradation, 2015, 97:90-96.
[13] BADAR U, AHMED N, BESWICK A J, et al. Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan[J]. Biotechnology Letters, 2000, 22(10):829-836.
[14] WEI-HUA X U, LIU Y G, ZENG G M, et al. Characterization of Cr(VI) resistance and reduction by Pseudomonas aeruginosa[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5):1336-1341.
[15] SARANGI A, KRISHNAN C. Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil[J]. Bioresource Technology, 2008, 99(10):4130-4137.
[16] PEI Q H, SHAHIR S, RAJ A S S, et al. Chromium(VI) resistance and removal by Acinetobacter haemolyticus[J]. World Journal of Microbiology and Biotechnology, 2009, 25(6):1085-1093.
[17] HUANG Y, FENG H, LU H, et al. A thorough survey for Cr-resistant and/or -reducing bacteria identified comprehensive and pivotal taxa[J]. International Biodeterioration and Biodegradation, 2017, 117:22-30.
[18] CHAI L, HUANG S, YANG Z, et al. Cr(VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag[J]. Journal of Hazardous Materials, 2009, 167(1-3):516-522.
[19] HUANG T P, XIAO Y, PAN J R, et al. Aerobic Cr(VI) reduction by an indigenous soil isolate Bacillus thuringiensis BRC-ZYR2[J]. Pedosphere, 2014, 24(5):652-661.
[20] LEE S E, LEE J U, CHON H T, et al. Reduction of Cr(VI) by indigenous bacteria in Cr-contaminated sediment under aerobic condition[J]. Journal of Geochemical Exploration, 2008, 96(2/3):144-147.
[21] 李凤娟, 徐菲, 李小龙, 等. 高盐度废水处理技术研究进展[J]. 环境科学与管理, 2014(2):72-75 LI Feng-juan, XU Fei, LI Xiao-long, et al. Research on treatment of high salinity wastewater[J]. Environmental Science and Management, 2014(2):72-75
[22] IBRAHIM A S S, EL-TAYEB M A, ELBADAWI Y B, et al. Bioreduction of Cr(VI) by potent novel chromate resistant alkaliphilic Bacillus sp strain KSUCr5 isolated from hypersaline Soda lakes[J]. African Journal of Biotechnology, 2011, 10(37):7207-7218.
[23] 龙腾发, 柴立元, 傅海洋. 碱性介质中还原高浓度Cr(VI)细菌的分离及其特性[J]. 应用与环境生物学报, 2006, 12(1):80-83 LONG Teng-fa, CHAI Li-yuan, FU Hai-yang. Isolation and characteristics of bacteria reducing high concentration of Cr(VI) in alkaline solution[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(1):80-83
[24] AMOOZEGAR M A, GHASEMI A, RAZAVI M R, et al. Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp strain MF2[J]. Process Biochemistry, 2007, 42(10):1475-1479.
[25] 施积炎, 龙碧波, 叶斌, 等. 还原六价铬的草酸青霉及其筛选方法:201510017900.1[P]. 2015-01-14
[26] ANAHID S, YAGHMAEI S, GHOBADINEJAD Z. Heavy metal tolerance of fungi[J]. Scientia Iranica, 2011, 18(3):502-508.
[27] ZWIETERING M H, JONGENBURGER I, ROMBOUTS F M, et al. Modeling of the bacterial-growth curve[J]. Applied and Environmental Microbiology, 1990, 56(6):1875-1881.
[28] SHOAIB M, SHAMSELDIN A Y, MELVILLE B W. Comparative study of different wavelet based neural network models for rainfall-runoff modeling[J]. Journal of Hydrology, 2014, 515:47-58.
[29] LONG D Y, TANG X J, CAI K et al. Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10[J]. Journal of Hazardous Materials, 2013, 256:24-32.
[30] ACEVEDO-AGUILAR F J, ESPINO-SALDANA A E, LEON-RODRIGUEZ I L, et al. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes[J]. Canadian Journal of Microbiology, 2006, 52(9):809-815.
[31] MUNOZ A H S, CORONA F G, WROBEL K, et al. Subcellular distribution of aluminum, bismuth, cadmium, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus)[J]. Biological Trace Element Research, 2005, 106(3):265-277.
[32] MARGESIN R, SCHINNER F. Potential of halotolerant and halophilic microorganisms for biotechnology[J]. Extremophiles, 2001, 5(2):73-83.
[33] DENG X H, CHAI L Y, YANG Z H, et al. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1[J]. Journal of Hazardous Materials, 2013, 248:107-114.
[34] RIEDEL G F. Influence of salinity and sulfate on the toxicity of chromium(VI) to the estuarine diatom Thalassiosira-Pseudonana[J]. Journal of Phycology, 1984, 20(4):496-500.
[35] RICHARD F C, BOURG A C M. Aqueous geochemistry of chromium:a review[J]. Water Research, 1991, 25(7):807-816.
[36] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:a review[J]. Journal of Hazardous Materials, 2013, 250:272-291.
[37] MANGAIYARKARASI M S, VINCENT S, JANARTHANAN S, et al. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups[J]. Saudi Journal of Biological Sciences, 2011, 18(2):157-167.
[38] ASATIANI N V, ABULADZE M K, KARTVELISHVILI T M et al. Effect of chromium(VI) action on Arthrobacter oxydans[J]. Current Microbiology, 2004, 49(5):321-326.
[39] DELEO P C, EHRLICH H L. Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous cultures[J]. Applied Microbiology and Biotechnology, 1994, 40(5):756-759.
[40] CORENO-ALONSO A, ACEVEDO-AGUILAR F J, REYNA-LOPEZ G E, et al. Cr(VI) reduction by an Aspergillus tubingensis strain:role of carboxylic acids and implications for natural attenuation and biotreatment of Cr(VI) contamination[J]. Chemosphere, 2009, 76(1):43-47.
[41] CHIRWA E N, WANG Y T. Simultaneous chromium(VI) reduction and phenol degradation in an anaerobic consortium of bacteria[J]. Water Research, 2000, 34(8):2376-2384.
[42] DONMEZ G, AKSU Z. Bioaccumulation of copper(Ⅱ) and nickel(Ⅱ) by the non-adapted and adapted growing Candida sp.[J]. Water Research, 2001, 35(6):1425-1434.
[43] CORENO-ALONSO A, SOLE A, DIESTRA E, et al. Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8[J]. Bioresource Technology, 2014, 158:188-192.
[44] PECHOVA A, PAVLATA L. Chromium as an essential nutrient:a review[J]. Veterinarni Medicina, 2007, 52(1):1-18.
[45] VARADHARAJAN C, BELLER H R, BILL M et al. Reoxidation of chromium(Ⅲ) products formed under different biogeochemical regimes[J]. Environmental Science and Technology, 2017, 51(9):4918-4927. |