Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (8): 1535-1541    DOI: 10.3785/j.issn.1008-973X.2018.08.013
Energy and Power Engineering     
High-temperature corrosion properties of water wall material 15CrMoG under reducing atmosphere
XU Li-gang1, HUANG Ya-ji1, WANG Jian1, ZOU Lei2, YUE Jun-feng2
1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China;
2. Jiangsu Frontier Electric Technology Co. Ltd, Nanjing 211102, China
Download:   PDF(1808KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The experiment around high-temperature properties of water wall material 15CrMoG was conducted, aiming at the situation that severe high-temperature corrosion occurred in most power plant under low-nitrogen combustion reducing atmosphere. Two reducing atmospheres were simulated by preparing standard gases, and specimens were coated with ash deposit to simulate the corrosivity of ash. The effects of different atmospheres and ash deposit were analyzed by mass gain curves, and scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were utilized to observe the micro-morphology, measure the elements distribution, and analyze the mechanism of high-temperature corrosion. Results showed that the CO+H2S+O2+N2 atmosphere was more corrosive than the H2S+O2+N2 atmosphere, and the corrosion process was sustained by CO. The corrosion degree of deposit-coated specimens was higher than deposit-free specimens. The corrosion process of H2S can be slowed down by compact oxide layer and enrichment of Cr, but CO can fade the protective effect. Alkali metal in the ash deposit could migrate to matrix and alkali metal salt could destruct the oxide layer and corrode the metal matrix, but the corrosion of alkali metal salt was slightly inhibited under reducing atmosphere.



Received: 15 November 2017      Published: 23 August 2018
CLC:  TK224  
Cite this article:

XU Li-gang, HUANG Ya-ji, WANG Jian, ZOU Lei, YUE Jun-feng. High-temperature corrosion properties of water wall material 15CrMoG under reducing atmosphere. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1535-1541.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.08.013     OR     http://www.zjujournals.com/eng/Y2018/V52/I8/1535


还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性

针对多数电厂在低氮燃烧还原性气氛下水冷壁高温腐蚀严重的现状,在高温管式炉中进行水冷壁材料15CrMoG的高温腐蚀试验.试验中以配制好的标气模拟锅炉水冷壁贴壁处的2种还原性气氛,试片表面涂积灰模拟灰腐蚀影响.通过腐蚀增重曲线分析不同气氛和积灰对于腐蚀的影响,采用扫描电子显微镜(SEM)和能量色能谱(EDS)观测材料试片的腐蚀微观形貌和元素成分,研究高温腐蚀机理.结果表明,CO+H2S+O2+N2气氛比H2S+O2+N2气氛的腐蚀能力更强,CO使得腐蚀能够持续进行,有积灰试片的腐蚀程度略高于无积灰试片;致密氧化层以及Cr元素向金属基体富集的特性能够减缓H2S渗透腐蚀,CO的存在削弱氧化层和Cr的保护作用;积灰中的碱金属能够向金属基体迁移,碱金属盐类能够破坏氧化层并且侵蚀金属基体,但是在还原性气氛下积灰腐蚀受到一定抑制.

[1] 赵永椿, 马斯鸣, 杨建平, 等. 燃煤电厂污染物超净排放的发展及现状[J]. 煤炭学报, 2015, 40(11):2629-2640 ZHAO Yong-chun, MA Si-ming, YANG Jian-ping, et al. Status of ultra-low emission technology in coal-fired power plant[J]. Journal of China Coal Society, 2015, 40(11):2629-2640
[2] 王继华. 烟气超净排放改造技术在燃煤机组中的应用[J]. 华电技术, 2017, 39(2):65-67 WANG Ji-hua. Application of flue gas ultra-clean emission technology in coal-fired power unit[J]. Huadian Technology, 2017, 39(2):65-67
[3] ZHAO Q, ZHANG Z, CHENG D, et al. High tempe rature corrosion of water wall materials T23 and T24 in simulated furnace atmospheres[J]. Chinese Journal of Chemical Engineering, 2012, 20(4):814-822.
[4] KAUR M, SINGH H, PRAKASH S. Surface engineering analysis of detonation-gun sprayed Cr3C2-NiCr coating under high-temperature oxidation and oxidation-erosion environments[J]. Surface and Coatings Technology, 2011, 206(2/3):530-541.
[5] PANERU M, STEIN-BRZOZOWSKA G, MAIER J, et al. Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying SO2 concentrations in an oxy-fuel combustion atmosphere[J]. Energy and Fuels, 2013, 27(10):5699-5705.
[6] 武岳, 王永征, 栗秀娟, 等. 生物质混煤燃烧锅炉过热器受热面金属氯腐蚀特性[J]. 动力工程学报, 2014, 34(9):690-695 WU Yue, WANG Yong-zheng, LI Xiu-juan, et al. Chlorine corrosion characteristic of boiler heating surface due to co-firing of biomass and coal[J]. Journal of Chinese Society of Power Engineering, 2014, 34(9):690-695
[7] 中华人民共和国国家质量监督检验检疫总局. 高压锅炉用无缝钢管:GB5310-2008[S]. 北京:中国标准出版社, 2008
[8] 中国国家标准化管理委员会. 煤灰成分分析方法:GBT1574-2007[S]. 北京:中国标准出版社, 2007
[9] ZONG C, WANG Q, HUANG X. Corrosion characteristics of 20G in the environment of heating surface in biomass boilers[J]. International Journal of Smart Home, 2015, 9(7):1-8.
[10] 吴广君. 实验室模拟锅炉水冷壁高温腐蚀的热分析动力学研究[D]. 杭州:浙江大学, 2005:17-18 WU Guang-jun. Study for thermal analysis kinetic of high-temperature corrosion of boiler's water wall in laboratory[D]. Hangzhou:Zhejiang University, 2005:17-18
[11] ZHONG X, WU X, HAN E. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water[J]. Corrosion Science, 2015, 90:511-521.
[12] TAN L, REN X, ALLEN T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water[J]. Corrosion Science, 2010, 52(4):1520-1528.
[13] CHEN L, LAN H, HUANG C, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750℃[J]. Engineering Failure Analysis, 2017, 79:245-252.
[14] LIU Y, FAN W, ZHANG X, et al. High-Temperature corrosion properties of boiler steels under a simulated high-chlorine coal-firing atmosphere[J]. Energy and Fuels, 2017, 31(4):4391-4399.
[15] UUSITALO M A, VUORISTO P, MANTYLA T A. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits[J]. Corrosion Science, 2004, 46(6):1311-1331.
[16] 张知翔, 成丁南, 边宝, 等. 水冷壁材料在模拟烟气中的高温腐蚀研究[J]. 材料工程, 2011(4):14-19 ZHANG Zhi-xiang, CHENG Ding-nan, BIAN Bao, et al. Study on high temperature corrosion of water wall materials in simulated furnace atmosphere[J]. Material Engineering, 2011(4):14-19
[17] KARLSSON S, JONSSON T, HALL J, et al. Mitigation of fireside corrosion of stainless steel in power plants:a laboratory study of the influences of SO2 and KCl on initial stages of corrosion[J]. Energy and Fuels, 2014, 28(5):3102-3109.

[1] YUAN Rui-feng, SUN Zhi-jian, YANG Ji-hu, YANG Ming, HU Ya-cai, YU Zi-tao. Experimental study on erosion wear behavior of PFA coated stainless steel tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 43-49.
[2] ZHENG Cheng-Hang, CHENG Le-Ming, JIA Zhong-Yang, WANG Qi-Hui, SHI Zheng-Lun, CEN Ge-Fa. Numerical simulation of the impact of secondary air for a pantleg
300 MW circulation fluidized bed boiler
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 743-749.
[3] SHI Dong-Bei, ZHOU Hao, CEN Ge-Fa. Experimental study and numerical simulation on tertiary air reburning with different micronized coal content[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 482-488.