Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (10): 1948-1958    DOI: 10.3785/j.issn.1008-973X.2017.10.008
Mechanical and Energy Engineering     
High speed and low impact control method for electro-hydraulic system of segment erector in tunnel boring machine
SUN Wei, DU Jia-nan, WANG Lin-tao, MA Hong-hui
School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
Download:   PDF(4502KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An electro-hydraulic control system of high speed segment assembling was proposed in order to solve the current problem of low speed and big start-up impact in rotary system of segment erector. The system used an accumulator circuit with variable speed integration. The system could get higher kinematic accuracy and the system impact could be effectively restrained through the real-time adjustment on integral coefficient according to the amplitude of error signal. The concussive impact of starting could be further reduced by setting accumulators on both sides of the motor for absorbing hydraulic impact. A rotary system of segment erector was constructed and analyzed by AMESim software after verifying that the simulation data is equivalent to the test data. Results show that the speed of rotary system in segment erector can be improved from 1.5 r/min to 6 r/min by using the high speed and low impact control method. The system impact of start-up phrase can be effectively reduced and the system impact will not increase with the improvement of rotating speed.



Received: 13 September 2016      Published: 27 September 2017
CLC:  TH137  
Cite this article:

SUN Wei, DU Jia-nan, WANG Lin-tao, MA Hong-hui. High speed and low impact control method for electro-hydraulic system of segment erector in tunnel boring machine. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1948-1958.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.10.008     OR     http://www.zjujournals.com/eng/Y2017/V51/I10/1948


盾构管片拼装机电液系统高速-低冲击控制方法

为了解决当前管片拼装机回转系统转速低且存在较大启动冲击的问题,提出采用蓄能器回路变速积分控制的高速管片拼装电液控制系统.通过根据误差信号幅值实时调整积分系数,使系统在获得较高运动精度的同时,有效地抑制了系统冲击;通过在液压马达两端增加蓄能器,吸收液压冲击,减小启动阶段的冲击振荡.利用AMESim软件建立管片拼装机回转系统仿真模型,通过对比仿真数据与实验数据验证了该模型的有效性,利用修正后的仿真模型对管片拼装机回转系统进行仿真分析.结果表明,采用提出的高速-低冲击控制方法,可以将管片拼装机回转系统的转速由当前的1.5 r/min提高到6 r/min,能够有效地降低启动阶段的系统冲击,避免出现系统冲击力矩随转速升高而变大的现象.

[1] GUO W T, GUO W Z, GAO F, et al. Innovative group-decoupling design of a segment erector based on GF set theory[J]. Chinese Journal of Mechanical Engineering, 2013, 26(2):264-274.
[2] LI G, CHEN Y D, WANG B, et al. Dynamics simulation of a six-dof tunnel segment erector for tunnel boring machine based on virtual prototype[J]. Applied Mechanics and Materials, 2013, 251:231-234.
[3] SHI H, GONG G F, YANG H Y, et al. Energy saving analysis of segment positioning in shield tunneling machine considering assembling path optimization[J]. Journal of Central South University, 2014, 21(12):4526-4536.
[4] 戴仕敏.上海虹桥枢纽迎宾三路隧道新建工程综述[C]//地下交通工程与工程安全.上海:同济大学,2011:132-140. DAI Shi-min. Summarize of new tunnel project about shanghai hongqiao yingbin road[C]//Underground Transportation Projects and Work safety. Shanghai:Tongji University, 2011:132-140.
[5] SHI H, GONG G F, YANG H Y, et al. Positioning speed and precision control of segment erector for shield tunneling machine[C]//2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Montreal:IEEE, 2010:1076-1080.
[6] WANG L T, GONG G F, YANG H Y, et al. The development of a high-speed segment erecting system for shield tunneling machine[J]. IEEE/ASME Transactions on Mechatronics, 2013,18(6):1713-1723.
[7] 杨旭,龚国芳,杨华勇,等.管片拼装实验台回转电液控制系统设计及试验分析[J].工程设计学报,2014,21(2):180-197. YANG Xu, GONG Guo-fang, YANG Hua-yong, et al. Design and test analysis of rotary electro-hydraulic control system for a segment assembly test bed[J]. Chinese Jour-nal of Engineering Design, 2014, 21(2):180-197.
[8] 王春行.液压控制系统[M].北京:机械工业出版社,1999:14-15.
[9] WANG L T, GONG G F, SHI H, et al. Positioning preci-sion and impact force control of segment erector for shield tunneling machine[C]//20123rd International Conference on Digital Manufacturing and Automation.Guilin:IEEE, 2012:612-617.
[10] 李永堂,雷布芳,TING K L.液压锤液压系统的建模与仿真[J].中国机械工程,2004,15(6):481-483. LI Yong-tang, LEI Bu-fang, TING K L. Modeling and simulation of the hydraulic system in hydraulic hammer using"Gray-box" modeling method[J]. China Mechanical Engineering, 2004, 15(6):481-483.
[11] 袁士豪,殷晨波,刘世豪.基于AMESim的平衡阀动态性能分析[J].农业机械学报,2013,44(8):273-280. YUAN Shi-hao, YIN Chen-bo, LIU Shi-hao. Working properties of counterbalance valve based on AMESim code[J]. Transactions of the Chinese Society for Agri-cultural Machinery, 2013, 44(8):273-280.
[12] 刘兴刚,张国志,郝丽娜,等.冷连轧轧制力仿真模型的可信度评估[J].东北大学学报:自然科学版,2008,29(4):537-540. LIU Xing-gang, ZHANG Guo-zhi, HAO Li-na, et al. Confidence level evaluation for simulation model of con-tinuous cold-rolling force[J]. Journal of Northeastern University:Natural Science, 2008, 29(4):537-540.
[13] 乐贵平.浅谈北京地区地铁隧道施工用盾构机选型[J].现代隧道技术,2003,40(3):14-30. LE Gui-ping. Selection of shield machines for Beijing metro construction[J]. Modern Tunnelling Technology, 2003, 40(3):14-30.
[14] 王纪森,王海涛,李仕辉.蓄能器在液压实验台中的参数分析与仿真[J].机床与液压,2010,38(15):89-91. WANG Ji-sen, WANG Hai-tao, LI Shi-hui. The parameter analysis and simulation of the accumulator in hydrau-lic test-bed[J]. Machine Tool and Hydraulics, 2010, 38(15):89-91.
[15] 马登成,杨士敏,陈筝,等.蓄能器对工程机械液压系统影响的仿真与试验[J].中国公路学报,2013,26(2):183-190. MA Deng-cheng, YANG Shi-min, CHEN Zheng, et al. Simulation and experimental study on impact of accumu-lator on engineering machinery hydraulic system[J]. China Journal of Highway and Transport, 2013, 26(2):183-190.

[1] HUANG Zi-liang, OUYANG Xiao-ping, ZHAO Tian-fei, ZHANG Jian-bo, ZHOU Liang, YANG Hua-yong. Characteristic of air content detection system for aircraft hydraulics[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 158-165.
[2] WEI Jian-hua, SUN Chun-geng, FANG Jin-hui, WANG Gang. Adaptive robust motion control of composite material hydraulic press[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 925-933.
[3] WANG Chao, GONG Guo-fang, YANG Hua-yong, ZHOU Jian-jun, DUAN Li-wen, ZHANG Ya-kun. NSVR based predictive analysis of cutterhead torque for hard rock TBM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 479-486.
[4] ZHONG Qi, ZHANG Bin, HONG Hao-cen, YANG Hua-yong. Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 8-15.
[5] GUO Fan, WEI Jian-hua, ZHANG Qiang, XIONG Yi. Hybrid position/pressure control of hydraulic press based on cascade controller[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1937-1947.
[6] SHI Jian-peng, QUAN Long, ZHANG Xiao-gang, XIONG Xiao-yan. Velocity and position characteristics of excavator's boom by separate meter-in and meter-out compound control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1797-1807.
[7] OUYANG Xiao-ping, LIU Yu-long, XUE Zhi-quan, GUO Sheng-rong, ZHOU Qing-he, YANG Hua-yong. null[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1361-1367.
[8] LIN Hao-Ling, XIE Hai-Bei, YANG Hua-Yong, et al. Key technologies on monopropellant-powered hydraulic free piston engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 872-876.