Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (9): 1681-1687    DOI: 10.3785/j.issn.1008-973X.2017.09.001
Civil and Traffic Engineering     
Experimental study on steel bars' fatigue damage based on piezomagnetism
ZHANG Jun1, JIN Wei-liang1,2, MAO Jiang-hong2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China;
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download:   PDF(1643KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Axial tensile fatigue tests of seventeen standard specimens machined by HRB400 hot-rolled bars were carried out and the piezomagnetic signals nearby them were real-timely recorded to analyze the evolution of piezomagnetism in fatigue of process. The experimental results demonstrate that the piezomagnetic signals of HRB400 bars are sensitive to fatigue damage, which can better indicate the fatigue damage process than stress-strain hysteresis loop. The piezomagnetic signal curve has a relatively steady extreme value ratio both in static loading and cyclic loading process. The piezomagnetic hysteresis loop curve changes significantly in different fatigue stages. The fatigue failure can be predicted according to the evolution of extreme points in hysteresis loop curve. The fracture position can be located preliminarily by the signal curve's characteristic of two magnetic probes. The obtained evolution process of the piezomagnetic signals agree with the three principal stages of fatigue, based on which the prediction method for the residual fatigue life of steel bars was proposed.



Received: 26 November 2016      Published: 25 August 2017
CLC:  TU375.1  
Cite this article:

ZHANG Jun, JIN Wei-liang, MAO Jiang-hong. Experimental study on steel bars' fatigue damage based on piezomagnetism. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1681-1687.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.09.001     OR     http://www.zjujournals.com/eng/Y2017/V51/I9/1681


基于压磁效应的钢筋疲劳损伤试验研究

对17个HRB400热轧钢筋加工的标准试件进行轴向拉伸疲劳试验,并通过实时记录试件周围的压磁信号,研究疲劳过程中压磁信号的演变规律.结果表明:HRB400钢筋的压磁信号对疲劳损伤很敏感,相比应力-应变滞回曲线更能反映疲劳损伤过程;在静力加载与循环加载过程中,压磁信号曲线都存在一个相对稳定的极值比;不同疲劳阶段的压磁滞回曲线存在显著差别,根据滞回曲线极值点的变化可预测疲劳失效;比较2个磁探头信号的曲线特征可初步判断失效的位置;试验得到的压磁信号演化过程符合疲劳三阶段规律,据此提出一个预测钢筋剩余疲劳寿命的方法.

[1] 陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002:1.
[2] 李秀芬,吴佩刚,赵光仪.高强混凝土梁抗弯疲劳性能的试验研究[J].土木工程学报,1997, 30(5):37-42. LI Xiu-fen, WU Pei-gang, ZHAO Guang-yi. Experimental research on bending fatigue behavior of high-strength concrete beams[J]. China Civil Engineering Journal, 1997, 30(5):37-42.
[3] 金伟良,张军,陈才生,等.基于压磁效应的钢筋混凝土疲劳研究新方法[J].建筑结构学报,2016,37(4):133-142. JIN Wei-liang, ZHANG Jun, CHEN Cai-sheng et al. A new method for fatigue study of reinforced concrete structures based on piezomagnetism[J]. Journal of Building Structures, 2016, 37(4):133-142.
[4] ERBER T, GURALNICKZ S A, DESAIZ R D. Piezomagnetism and fatigue[J]. Journal of Physics D:Applied Physics, 1997, 30(20):2818-2836.
[5] JILES D C. Theory of the magnetomechanical effect[J]. Journal of Physics D:Applied Physics, 1995,28(8):1537-1546.
[6] JILES D C, LI L. A new approach to modeling the magnetomechanical effect[J]. Journal of Applied Physics, 2004, 95(11):7058-7060.
[7] GURALNICK S A, BAO S, ERBER T. Piezomagnetism and fatigue:Ⅱ[J]. Journal of Physics D:Applied Physics, 2008, 41(11):1-11.
[8] BAO S, ERBER T, GURALNICK S A, et al. Fatigue, magnetic and mechanical hysteresis[J]. Strain, 2010, 47(4):372-381.
[9] VANDENBOSSCHE L, DUPR L. Fatigue damageassessment by the continuous examination of the magnetomechanical and mechanical behavior[J]. Journal of Applied Physics, 2009, 105:07E707.
[10] 中国科学院金属研究所.GB/T15248-2008:金属材料轴向等幅低循环疲劳试验方法[S].北京:中国标准出版社,2008.
[11] BIRSS R R, FAUNCE C A, ISAAC E D. Magnetomechanical effects in iron and iron-carbon alloys[J]. Journal of Physics D:Applied Physics. 1971, 4(7):1040-1048.
[12] DUBOV A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment. 1997, 39(9):401-405.
[13] BAO S, FU M,GU Y. Evolution of the piezomagnetic field of ferromagnetic steels subjected to cyclic tensile stress with variable amplitudes[J]. Experimental Mechanics, 2016, 56(6):1017-1028.

No related articles found!