Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (8): 1559-1567    DOI: 10.3785/j.issn.1008-973X.2017.08.011
Mechanical and Energy Engineering     
Method of calculating friction excitation of helical gear with geometric eccentricity
LIU Wen, YANG Yun, LIN Teng-jiao, ZHANG Jin-hong
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
Download:   PDF(1436KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyse the calculation method of friction excitation of helical gear pair with eccentricity error, the formulas of dynamic working pressure angle, transient pitch radius and transient transmission ratio were derived by establishing the geometrical model of a single helical gear pair. Describing the variational process of the contact line of a single tooth pair by piecewise function, the total contact line length of all meshing tooth pairs could be got by addition. The friction and frictional torque were obtained through cutting off the contact line into two segments with pitch line and compared with the results without considering eccentricity error. It shows that when considering the geometric eccentricity, the length of contact line, friction and frictional torque are more complicated, and the frequency spectrum peaks appear both at meshing frequency and shaft rotational frequency; and meanwhile, side frequency band occurs with the meshing frequency as central frequency and affects the stability of the transmission system.



Received: 10 September 2016      Published: 16 August 2017
CLC:  TH117  
Cite this article:

LIU Wen, YANG Yun, LIN Teng-jiao, ZHANG Jin-hong. Method of calculating friction excitation of helical gear with geometric eccentricity. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(8): 1559-1567.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.08.011     OR     http://www.zjujournals.com/eng/Y2017/V51/I8/1559


偏心误差影响下的斜齿轮摩擦激励计算方法

为了研究含偏心误差的斜齿轮副摩擦激励计算方法,建立单级含偏心误差斜齿轮副几何模型,推导斜齿轮副的动态啮合角、瞬态节圆半径以及瞬态传动比的计算公式.将单对齿接触线的长度变化过程以分段函数的形式表示,进而叠加求得参与啮合的各齿对接触线总长度,将各条接触线以节线为界分为2段,计算齿轮副齿面摩擦力及摩擦力矩,与未考虑偏心误差时斜齿轮副接触线长度、摩擦力及摩擦力矩进行对比分析.结果表明:当考虑偏心误差后,接触线长度、摩擦力及摩擦力矩都变得更加复杂,频域曲线在啮合频率处出现峰值,在输入及输出轴转频处出现峰值,在啮合频率两侧出现许多转频的边频,影响了传动系统的稳定性.

[1] FLASKER J, FAJDIGA G, GLODEZ S, et al. Numerical simulation of surface pitting due to contact loading[J]. International Journal of Fatigue, 2001, 23(7):599-605.
[2] VELEX P, SAINSOT P. An analysis study of tooth friction excitations in errorless spur and helical gears[J]. Mechanism Machine Theory, 2002, 37(7):641-658.
[3] LUNDVALL O, STROMBERG N, KLARBRING A. A flexible multi-body approach for frictional contact in spur gears[J]. Journal of Sound and Vibration, 2004, 278(3):479-499.
[4] SMITH J D. Gears and their vibration[M]. New York:Marcel Dekker, 1983.
[5] KUBO A, KIYONO S. Vibrational excitation of cylindrical involute gears due to tooth form error[J]. Bulletin of JSME, 1980, 23(183):1536-1543.
[6] KAR C, MOHANTY A R. An algorithm for determination of time-varying frictional force and torque in a helical gear system[J]. Mechanism and Machine Theory, 2007, 42(4):482-496.
[7] 李文良,王黎钦,常山,等.斜齿轮时变接触线改进算法及螺旋角对接触线影响[J].哈尔滨工程大学学报,2013,33(12):1529-1533. LI Wen-liang, WANG Li-qin, CHANG Shan, et al. The improved algorithm of time-varying contact line and influence on contact line with different helix angles[J]. Journal of Harbin Engineering University, 2013, 33(12):1529-1533.
[8] JIANG Han-jun, SHAO Yi-min. The influence of mesh misalignment on the dynamic characteristics of helical gears including sliding friction[J]. Journal of Mechanical Science and Technology, 2015, 29(11):4563-4573.
[9] 李文良,王黎钦,常山,等.船用斜齿轮时变接触线对齿面摩擦力及摩擦扭矩的影响研究[J].船舶力学,2013,17(4):418-424. LI Wen-liang, WANG Li-qin, CHANG Shan,et al Study on the impact of time-varying contact line on tooth surface friction force and friction torque of helical gear[J]. Journal of Ship Mechanics, 2013, 17(4):418-424.
[10] VAISHYA M, SINGH R, Sliding friction-induced non-linear and parametric effects in gear dynamic[J]. Journal of Sound and Vibration, 2001, 248(4):671-694.
[11] HOWARD I, JIA S. The dynamic modeling of a spur gear in mesh including friction and crack[J]. Mechanical Systems And Signal Processing, 2001, 15(5):831-853.
[12] RAO A C, Gear friction coefficients and force[J]. Wear, 1979, 53(1):87-93.
[13] 王连生,郝志勇,郑康,等.考虑齿轮阻滞力矩的变速箱敲击噪声仿真与试验[J].浙江大学学报:工学版,2014, 48(5):911-916. WANG Lian-sheng, HAO Zhi-yong, ZHENG Kang, et al. Simulation and experiment in transmission gear rattle considering drag torque[J]. Journal of Zhejiang University:Engineering Science. 2014, 48(5):911-916.
[14] 刘长钊,秦大同,廖映华.考虑齿面变摩擦系数的斜齿轮传动变速过程动力学分析[J].振动与冲击,2014,33(24):150-157. LIU Chang-zhao, QIN Da-tong, LIAO Ying-hua. Dynamic model for a parallel-axis helical gears transmission system based on variable friction coefficient between contact teeth[J] Journal of Vibration and Shock. 2014, 33(24):150-157.
[15] 马辉,王奇斌,黄婧,等.考虑几何偏心的斜齿轮耦合转子系统振动响应分析[J].航空动力学报,2013,28(1):16-24. MA Hui, WANG Qi-bin, HUANG Jing, et al. Vibration response analysis of gear coupled rotor system considering geometric eccentric effect of helical gears[J]. Journal of Aerospace Power. 2013, 28(1):16-24.
[16] ZHANG Yi-min, WANG Qi-bin, MA Hui, et al. Dynamic analysis of three-dimensional helical geared rotor system with geometric eccentricity[J]. Journal of Mechanical Science and Technology, 2013, 27(11):3231-3.
[17] 丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005. 08.

[1] WANG Fei-fei, XU Ying-qiang, LIU Kai-an. Probability analysis method of tangential contact stiffness on rough surfaces[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 255-260.
[2] ZHAO Bin, ZHANG Song, LI Jian-feng. Optimization of grinding parameters based on parts' friction properties[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 16-23.