Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Electrical Engineering     
Experimental study on reduction of particle and nitrogen oxide emissions of diesel engine by non-thermal plasma
XU Hui, CAI Yi xi, LI Xiao hua, SHI Yun xi, LI Wei jun
School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
Download:   PDF(974KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The non-thermal plasma (NTP) reactor was designed to decrease diesel engine emission based on dielectric barrier discharge. The experiment was carried out to dispose the harmful emissions of diesel engine with diesel particular(DPF) by NTP. Results show that the particle number size distribution of diesel engine is single peak distribution under the operation condition, of which 93% of particulate matter (PM) are micro-particles. The trapping efficiency of DPF is 93.8% for particle number. After the active NTP gases being pumped in, the particle number concentration of the DPF downstream is cut down by 68%, comparing to that of the DPF downstream without NTP|the average geometry of PM is decreased. Morever, the particulate matter of size distribution between 25.4 and 124.1nm is cut down by 80% obviously. With the function of DPF and NTP, PM emission and NOx emission can be cut down at the same time. The decreasing range of particle number concentration and NOx conversion rate are 98% and 57%, respectively.



Published: 08 December 2016
CLC:  TK 421  
Cite this article:

XU Hui, CAI Yi xi, LI Xiao hua, SHI Yun xi, LI Wei jun. Experimental study on reduction of particle and nitrogen oxide emissions of diesel engine by non-thermal plasma. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2418-2423.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.12.023     OR     http://www.zjujournals.com/eng/Y2016/V50/I12/2418


低温等离子体降低柴油机微粒和NOx排放试验研究

为降低柴油机微粒(PM)和NOx排放,基于介质阻挡放电原理设计低温等离子体(NTP)发生器|利用NTP,对加装柴油机微粒捕集器的柴油机进行试验研究.结果表明:该工况下,柴油机微粒排放的粒径分布呈单峰分布,93%的微粒是超细微粒|柴油机微粒捕集器(DPF)对微粒数量的捕集效率约为93.8%|NTP活性气体通入后,与未通入NTP的DPF下游微粒的数量密度相比,DPF下游微粒排放的数量密度减小了68%,粒径尺寸在25.5~124.1 nm减小幅度相对较大,约为80%,微粒的几何平均直径也有所减小;DPF和NTP活性气体双重作用可在降低微粒排放的同时降低NOx排放;微粒数量密度减小98%,NOx转化效率约为57%.

[1] 龚金科,吴刚,王曙辉,等.径向柴油机微粒捕器流速分布特性数值分析[J].农业工程,2010,26(4): 119-126.
GONG Jinke, WU Gang, WANG Shuhui, et al. Numerical analysis on distribution characteristics of flow velocity in a radial style diesel particulate filter [J]. Transactions of The CASE, 2010, 26(4): 119-126.
[2] 李向荣,张薇,王长园,等.柴油机密集喷雾特性研究[J].内燃机学报,2008,26(6): 513-518.
LI Xiangrong, ZHANG Weiwei, WANG Changyuan, et al. Research on diesel fuel thick spray characteristics [J]. Transactions of CSICE, 2008, 26(6): 513-518.
[3] 刘巽俊.内燃机的排放与控制[M]. 北京:机械工业出版社,2003,18-19.
[4] HWANAM K, YONGHA S, KILSUNG J, et al. Size distributions and number concentration of particle from the DOC and CDPF [J]. Journal of Mechanical Science and Technology, 2008, 22(9): 1793-1799.
[5] 中华人民共和国国家质量监督检验检疫总局.轻型汽车污染物排放限值及测量方法(中国第五阶段): GB18352.52013 [S]. 北京:中国标准出版社,2013.
[6] MASAAKI O, NAOKI A, TOMOYUKI K, et al. Continuous regeneration of ceramics particulate filter in stationary diesel engine by nonthermalplasmainducedozone injection [J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1568-1574.
[7] MASAAKI O, NAOKI A, TOMOYUKI K, et al. Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing [J]. Thin Solid Films, 2007, 515(9): 4289-4295.
[8] MASAAKI O, NAOKI A, TOMOYUKI K, et al. Continuous regeneration of ceramic particulate filter in stationary diesel engine by nonthermalplasmainducedozone injection [J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1568-1574.
[9] SHI Y X, CAI Y X, LI X H, et al. Study on the mechanism and method of DPF regeneration by oxygen radical generated by NTP technology [J]. International Journal of Automotive Technology, 2014, 15(6): 871876.
[10] 蔡忆昔,赵卫东,李小华,等.低温等离子体降低柴油机颗粒物排放的试验[J].农业机械学报,2008,39(2): 16.
CAI Yixi, ZHAO Weidong, LI Xiaohua, et al. Experimental study on nonthermal plasma aftertreatment of particulate matter in diesel engine [J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(2): 16.
[11] 赵航,王务林.车用柴油机后处理技术[M].北京:中国科学技术出版社,2010,152-153.
[12] TAKAKI K, CHANG J S. Atmospheric pressure of nitrogen plasmas in a ferroelectric packed bed barrier discharge reactor [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(3): 481-490.
[13] MORGAN N N, METAWA A, GARAMOON A. Planar atmospheric pressure dielectric barrier discharge for zone production [J]. Indian Journal of Physics, 2011, 85(11): 1631-1642.
[14] MUHAMMAD A M,DAVID H,RICHARD H. Surface plasma versus plasma: energy deposition and ozone generation in air and oxygen [J]. Plasma Chem Plasma Process, 2015, 35(4): 697-704.
[15] 孟忠伟,李路,陈鹏,等.DPF白载体传热特性的试验研究[J].内燃机工程,2014,35(4): 103-108.
MENG Zhongwei, LI Lu, CHEN Peng, et al. Experimental study on heat transfer characteristics of bare DPF substrate [J]. Chinese Internal Combustion Engine Engineering, 2014, 35(4): 103108.
[16] 龚金科,龙罡,蔡皓,等. 基于铈基添加剂的微粒捕集器催化再生研究[J]. 内燃机学报,2011, 29(6): 515-519.
GONG Jinke, LONG Gang, CAI Hao, et al. Study on diesel particulate filter catalytic regenerating with ceriabased additive [J]. Transactions of CSICE, 2011, 29(2): 515-519.
[17] VERNICA R P, AGSTUINE B L. Catalytic regeneration of diesel particulate filters: comparison of Pt and CePr active phases [J]. Chemical Engineering Journal, 2015, 279: 79-85.
[18] 胡志远,杨奇,谭丕强,等.在用共轨柴油机燃用沪四柴油的超细微粒排放[J].同济大学学报,2013,41(11): 1721-1725.
HU Zhiyuan, YANG Qi, TAN Piqiang, et al. Ultrafine particle emission and size distribution of an onused commom rail diesel engine fuled with Shanghai Ⅳ diesel [J]. Journal of Tongji University, 2014, 41(11): 1721-1725.
[19] FENG X Y, GE Y S, MA C C, et al. Experimental study on the nitrogen dioxide and particulate matteremission from diesel engine retrofitted with particulate oxidation catalyst [J]. Science of The Total Environment, 2014, 472: 56-62.

[1] FAN Zhi peng, WANG Lei, XU Huan xiang, DOU Wen bo, LI Dao fei, YU Xiao li. Turbocharger bypassed exhaust energy recovery and utilization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2277-2282.
[2] LI Meng han, ZHANG Qiang, LI Guo xiang, SHAO Si dong. HC emissions of high pressure DI diesel pilot ignited natural gas engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 341-346.
[3] XIE Yang, LUO Qi yuan, MA Jian, XU Cang su. Numerical simulation and experimental validation of internal nozzle flow characteristic of injector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 111-115.
[4] FANG Yi dong, LOU Di ming, HU Zhi yuan, TAN Pi qiang. Effects of continuously regenerating particulate filter on PM and NOx emission from bio diesel engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1836-1841.
[5] XIE Yang, YAO Zi-shu, MA Jian, LUO Qi-yuan, XU Cang-su. Numerical study on internal nozzle flow characteristic of diesel under hot fuel conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 938-943.
[6] MI Gang-gang, ZHOU Wen-hua, SHEN Cheng-yu, GUO Xiu-qi. Design of driving module and fault diagnosis for
high-speed solenoid valve of diesel
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1654-1659.
[7] GUO Xiu-qi, ZHOU Wen-hua, ZHENG Chao-wu. Rail pressure control strategy based on auto-code
generation technology
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1441-1445.
[8] GUO Xiu-qi, ZHOU Wen-hua, ZHENG Chao-wu. Design of solenoid valve driving circuit module for high pressure
common rail system based on circuit simulation
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 901-906.
[9] ZHOU Wen-hua, ZHU Chun-di, SU Yu. Key technology of electronic controlled system of common-rail diesel engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 118-121.
[10] ZHENG Xu, HAO Zhi-yong, JIN Yang, LU Zhao-gang. Studying noise contributions of IC engine via MEEMD method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(5): 954-960.