Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Energy Engineering     
Turbocharger bypassed exhaust energy recovery and utilization
FAN Zhi peng, WANG Lei, XU Huan xiang, DOU Wen bo, LI Dao fei, YU Xiao li
Power Machinery and Vehicular Engineering Institute, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1058KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An exhaust energy recovery method was proposed to recover exhaust energy wasted through wastegate under high speed and heavy load conditions, in which compressed air was used as energy storage medium. The simulation model was built to analyze the recovery performance; the promotion of energy recovery efficiency under driving cycle condition was calculated. Results show that the maximum recovery power of compressed air is 6.9 kW and the maximum recovery efficiency of bypassed exhaust energy is 55%. Total energy efficiency of NEDC, UDDS and HWFET driving cycles increases by 0.3% using this utilization method. Further more, two approaches were proposed to utilize recovered compressed air. One is utilizing compressed air as the intake of vehicle braking energy recovery system, which can improve the recovery pressure and braking torque up to 167% and 140%, respectively. The other is utilizing compressed air to realize intake pipe air injection of engine, which can improve acceleration performance of vehicles up to 15%.



Published: 08 December 2016
CLC:  TK 421  
Cite this article:

FAN Zhi peng, WANG Lei, XU Huan xiang, DOU Wen bo, LI Dao fei, YU Xiao li. Turbocharger bypassed exhaust energy recovery and utilization. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2277-2282.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.12.005     OR     http://www.zjujournals.com/eng/Y2016/V50/I12/2277


涡轮增压器旁通废气能量回收利用

以压缩空气作为储能介质,提出一种废气能量回收方法,用以回收高速大负荷工况下被废气阀旁通的废气能量.建立数值仿真模型,分析该方法的回收效果,并在循环工况中计算总能效率的提升幅度.结果表明:压缩空气最大回收功率约6.9 kW,旁通废气能量回收效率最高达55%|在NEDC、UDDS和HWFET这3种循环工况中,采用该方法均可使系统总能效率提升0.3%.针对回收的压缩空气,提出2种利用途径:作为车辆制动能量回收系统的进气气源,可使回收的气体压力和制动转矩增幅最高达到167%和140%|用于发动机进气总管补气,可使车辆加速性能提升约15%.

[1] 黄若,尚文涛,张威力.车用涡轮增压器瞬态加速性能及其评价方法研究[J].内燃机工程,2014, 35(2): 27-35.
HUANG Ruo, SHANG Wentao, ZHANG Weili. Study on turbocharger transient response characteristics and its evaluation method [J]. Chinese Internal Combustion Engine Engineering, 2014, 35(2): 27-35.
[2] 陆家祥.柴油机涡轮增压技术[M].北京:机械工业出版社,1999: 141-143.
[3] ANDERSEN J, KARLSSON E, GAWELL A. Variable turbine geometry on SI engines [R]. Detroit: SAE Technical Paper, 2006.
[4] MARCELLO C, ZHOU J, LISA FIORENTINI, et al. Modelbased analysis and optimization of turbocharged diesel engines with a variable geometry compressor and turbine system [R]. Detroit: SAE, 2012.
[5] 谢辉,李苏苏.重型车用柴油机废气发电复合涡轮行驶工况的适应性[J].天津大学学报:自然科学与工程技术版,2014,47(6): 558-564.
XIE Hui, LI Susu. Adaptive on driving cycles of waste energy recovery turbocompound systems on a heavy duty diesel engine [J]. Journal of Tianjin University: Science and Technology, 2014, 47(6): 558-564.
[6] ZHAO R, ZHUGE W, ZHANG Y, et al. Study of twostage turbine characteristic and its influence on turbocompound engine performance [J]. Energy Conversion and Management, 2015, 95: 414-423.
[7] TERDICH N. Mild hybridization via electrification of the air system: electrically assisted and variable geometry turbocharging impact on an offroad diesel engine [J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(3):031703.
[8] 徐广兰.电动增压器电控系统的设计及试验研究[D].天津:天津大学, 2010.
XU Guanglan. Design of electronic control unit forelectric supercharger [D]. Tianjin: Tianjin University,2010.
[9] TERDICH N, MARTINEZBOTAS R. Experimental efficiency characterization of an electrically assisted turbocharger [R]. Napoli: SAE Technical Paper, 2013.
[10] SCHECHTER M M. Regenerative compression braking: a low cost alternative to electric hybrids [R]. Michigan: SAE Technical Paper, 2000.
[11] 王雷,李道飞,叶锦.车用发动机压缩空气制动循环特性研究[J].浙江大学学报:工学版, 2014, 48(1): 56-62.
WANG Lei, LI Daofei, YE Jin. Investigation on performances of vehicle engine air compression braking [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(1): 56-62.
[12] 王雷,李道飞,徐焕祥,等.发动机压缩空气再生制动理想热力循环分析[J].天津大学学报:自然科学版,2014,47(1): 21-27.
WANG Lei, LI Daofei, XU Huanxiang. Thermodynamic analysis of engine air compression cycle for regenerative braking [J]. Journal of Tianjin University: Science and Technology, 2014, 47(1): 21-27.
[13] DARLINGTON A, CIESLAR D, COLLINGS N, et al. Assessing boostassist options for turbocharged engines using 1D engine simulation and model predictive control [R]. Malmo: SAE Technical Paper, 2012.
[14] 戴澍凯.公交车用增压柴油机的补气研究[D].武汉:武汉理工大学, 2010.
DAI Shukai. Study on the air injection of bus turbocharged diesel engine [D]. Wuhan: Wuhan University of Technology, 2010.
[15] GILKES O S, MISHRA R, FIELDHOUSE J, et al. Simulation of the transient performance of turbocharged diesel engine featuring a two point air injection transient assist system [R]. Detroit: SAE, 2008.

[1] XU Hui, CAI Yi xi, LI Xiao hua, SHI Yun xi, LI Wei jun. Experimental study on reduction of particle and nitrogen oxide emissions of diesel engine by non-thermal plasma[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2418-2423.
[2] LI Meng han, ZHANG Qiang, LI Guo xiang, SHAO Si dong. HC emissions of high pressure DI diesel pilot ignited natural gas engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 341-346.
[3] XIE Yang, LUO Qi yuan, MA Jian, XU Cang su. Numerical simulation and experimental validation of internal nozzle flow characteristic of injector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 111-115.
[4] FANG Yi dong, LOU Di ming, HU Zhi yuan, TAN Pi qiang. Effects of continuously regenerating particulate filter on PM and NOx emission from bio diesel engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1836-1841.
[5] XIE Yang, YAO Zi-shu, MA Jian, LUO Qi-yuan, XU Cang-su. Numerical study on internal nozzle flow characteristic of diesel under hot fuel conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 938-943.
[6] MI Gang-gang, ZHOU Wen-hua, SHEN Cheng-yu, GUO Xiu-qi. Design of driving module and fault diagnosis for
high-speed solenoid valve of diesel
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1654-1659.
[7] GUO Xiu-qi, ZHOU Wen-hua, ZHENG Chao-wu. Rail pressure control strategy based on auto-code
generation technology
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1441-1445.
[8] GUO Xiu-qi, ZHOU Wen-hua, ZHENG Chao-wu. Design of solenoid valve driving circuit module for high pressure
common rail system based on circuit simulation
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 901-906.
[9] ZHOU Wen-hua, ZHU Chun-di, SU Yu. Key technology of electronic controlled system of common-rail diesel engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 118-121.
[10] ZHENG Xu, HAO Zhi-yong, JIN Yang, LU Zhao-gang. Studying noise contributions of IC engine via MEEMD method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(5): 954-960.