Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Chemical and Environmental engineering     
Simulation on formation and dust separation of axial pressure and radial whirl air curtain
NIE Wen,WEI Wen le,LIU Yang hao,MA Xiao,PENG Hui tian,LIU Qiang
1. State Key Laboratory of Mining Disaster Prevention and Control Cofounded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China;
2. College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Download:   PDF(1498KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The simulation experiment  was designed  to improve the dust separation effect of air curtain and reduce the dust concentration in heading face. The law of formation and dust separation effect of the two kind of air curtain is determined. (i) The law of formation: the increase of pressure air volume is not conducive to the formation of two kinds of air curtain, which has more effect on axial pressure air curtain; the  increase of pressing and pumping air volume ratio is beneficial to the formation of axial pressure air curtain, but has opposite effect on the formation of radial whirling air curtain. (ii) The law of dust separation: the more the pressure air volume is, the better the dust separation effect of the two kinds of air curtain is; but axial pressure wind curtain disappears when the pressure air volume increases to 300 m3/min, the outward migration ability of dust in heading face becomes stronger with the increase of pressure air volume under this condition; the lower the pressing and pumping air volume ratio is, the better the dust separation effect of the two kinds of air curtain is, and the effect of radial whirl air curtain improves greater; the dust separation effect of the two kinds of air curtain is close to the optimal value when the pressing and pumping air volume ratio is 0.75. The formation of radial whirl air curtain is less affected by ventilation condition, and its dust separation effect is generally better, which is more suitable for dust separation in the field of heading face.



Published: 22 September 2016
CLC:  TD 714.3  
Cite this article:

NIE Wen,WEI Wen le,LIU Yang hao,MA Xiao,PENG Hui tian,LIU Qiang. Simulation on formation and dust separation of axial pressure and radial whirl air curtain. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1730-1737.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.09.13     OR     http://www.zjujournals.com/eng/Y2016/V50/I9/1730


轴向压及径向旋流风幕的形成与隔尘仿真

为了提高掘进面的风幕隔尘效果并降低粉尘体积质量,设计轴向压风幕及径向旋流风幕形成与隔尘仿真实验,确定2种风幕的形成规律与隔尘规律.1)形成规律:压风量越大,越不利于2种风幕的形成,但对轴向压风幕的影响更大|压抽比越大,越利于形成轴向压风幕,对径向旋流风幕的影响相反.2)隔尘规律:压风量越大,2种风幕的隔尘效果越优|当压风量增至300 m3/min后,轴向压风幕消失,该条件下,压风量越大,迎头粉尘向外运移能力越强|压抽比越小,2种风幕的隔尘效果越优,且径向旋流风幕的效果提高更大|当压抽比为0.75时,2种风幕的隔尘效果均已接近最优值.径向旋流风幕的形成受通风条件影响较小,隔尘效果也更优,更适用于掘进面现场隔尘.

[1] 人民网. 2013年全国报告职业病26万例尘肺病占八成[EB/OL]. (20140630). [20140630]. http:∥health.people.com.cn/n/2014/0630/c1473925219843.html.
[2] 聂文. 综掘工作面气载粉尘运移规律及抑制技术研究[D]. 山东青岛: 山东科技大学, 2013.
NIE Wen. Research on the airborne dust migration rule and inhibition technology in mechanized excavation face [D]. Qingdao: Shandong University of Science and Technology: 2013.
[3] 陈贵, 王德明, 王和堂, 等. 大断面全岩巷综掘工作面泡沫降尘技术[J]. 煤炭学报, 2012, 37(11): 1859-1864.
CHEN Gui, WANG Deming, WANG Hetang, et al. The technology of controlling dust with foam for fully mechanized excavation face of large crosssection rock tunnel [J]. Journal of China Coal Society, 2012, 37(11): 1859-1864.
[4] 聂文, 程卫民, 周刚, 等. 掘进机外喷雾负压二次降尘装置的研制与应用[J]. 煤炭学报, 2014, 39(11): 2446-2452.
NIE Wen, CHENG Weimin, ZHOU Gang, et al. Research and application on external spray secondary dust falling device with negative pressure of roadheader [J]. Journal of China Coal Society, 2014, 39(12): 2446-2452.
[5] 王辉, 蒋仲安, 杜翠凤, 等. 综掘巷道粉尘体积分数分布的现场实测与数值模拟[J].辽宁工程技术大学学报:自然科学版, 2011, 30(3): 345-348.
WANG Hui, JIANG Zhongan, DU Cuifeng, et al. Field study and numerical research on dust concentration distribution in the excavation tunnel [J]. Journal of Liaoning Technical University: Natural Science, 2011, 30(3): 345-348.
[6] 聂文, 程卫民, 周刚, 等. 掘进面喷雾雾化粒度受风流扰动影响实验研究[J]. 中国矿业大学学报, 2012, 41(3): 378-383.
NIE Wen, CHENG Weimin, ZHOU Gang, et al. Experimental study on spray atomized particle size affected by airflow disturbance in heading face [J]. Journal of China University of Mining and Technology, 2012, 41(3): 378-383.
[7] TORAO J, TORNO S, MENNDEZ M, et al. Auxiliary ventilation in mining roadways driven with roadheaders: validated CFD modelling of dust behavior [J]. Tunnelling and Underground Space Technology, 2011, 26(1): 201-210.
[8] 秦跃平,张苗苗,崔丽洁, 等. 综掘面粉尘运移的数值模拟及压风分流降尘方式研究[J]. 北京科技大学学报, 2011, 33(7): 790-794.
QIN Yueping, ZHANG Miaomiao, CUI Lijie, et al. Removal modes with the forced ventilation shunt in a fully mechanized workface [J]. Journal of University of Science and Technology Beijing, 2011, 33(7): 790-794.
[9]KURNIA J C, SASMITO A P, MUJUMDAR A S. Dust dispersion and management in underground mining faces [J]. International Journal of Mining Science and Technology, 2014,24(1): 39-44.
[10] NAZIF H R, BASIRAT T. Development of boundary transfer method in simulation of gassolid turbulent flow of a riser [J]. Applied Mathematical Modelling, 2013, 37(4): 2445-2459.
[11] 程卫民, 聂文, 姚玉静, 等. 综掘面旋流气幕抽吸控尘流场的数值模拟[J]. 煤炭学报, 2011, 36(8): 1342-1348.
CHENG Weimin, NIE Wen, YAO Yujing, et al. Numerical simulation on the flow of swirling flow air curtain aspiration control dust in fully mechanized workface [J]. Journal of China Coal Society, 2011, 36(8): 1342-1348.
[12] 徐景德, 周心权. 有源巷道中粉尘运移与浓度分布规律的实验研究[J], 湘潭矿业学院学报, 1999, 14(2): 16.
XU Jingde, ZHOU Xinquan. The experimental study on dust transport and concentrantion distribution in airways with dust source [J]. Journal of xiangtan mining institute, 1999, 14(2): 16.
[13] 李雨成. 基于风幕技术的综掘面粉尘防治研究[D]. 阜新: 辽宁工程技术大学, 2010: 27-30.
LI Yucheng. Study on control of dust at driving fully mechanized face based on air curtain technology [D]. Fuxin: Liaoning Technical University, 2010: 27-30.
[14] SILVESTER S A, LOWNDES I S, HARGREAVES D M. A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions [J]. Atmospheric Environment, 2009, 43(40): 6415-6424.
[15] SERAFIN J, BEBCAK A, BERNATIK A, et al. The influence of air flow on maximum explosion characteristics of dustair mixtures [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 209-214.
[16] KONOREV M M , NESTERENKO G F. Presentday and promising ventilation and dustandgas suppression systems at open pit mines [J]. Journal of Mining Science, 2012, 48(2): 322-328.
[17] 聂文, 程卫民, 周刚, 等. 综掘工作面压风气幕形成机理与阻尘效果分析[J]. 煤炭学报, 2015, 40(3): 609-615.
NIE Wen, CHENG Weimin, ZHOU Gang, et al. Formation mechanism of pressure air curtain and analysis of dust suppressions effects in mechanized excavation face [J]. Journal of China Coal Society, 2015, 40(3): 609-615.
[18] CHENG W M, NIE W, QI Y D, et al. Research on diffusion rule of dust pollution in coal mine wholerock fully mechanized workface [J]. Journal of Convergence Information Technology, 2012, 7(22): 728-736.
 [19] 国家安全生产监督管理总局.煤矿安全规程\[S\].北京:煤炭工业出版社,2011.

No related articles found!