Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Aeronautics and Astronautics Technology     
Cooperative standoff tracking for multiUAVs based on tau vector field guidance
YANG Zu qiang, FANG Zhou, LI Ping
1.School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China;
2. College of Control Science and Engineering, Hangzhou 310027, China
Download:   PDF(1534KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A four dimensional (4D) vector field guidance (VFG) method was presented for timeconstrained cooperative standoff tracking of multiple unmanned aerial vehicles (UAVs). The tau VFG (τVFG) was proposed utilizing the 4D synchronous guidance capability of the intrinsic tau gravity (tauG) guidance strategy. A comprehensive standoff tracking method was designed for multiple UAVs with the help of τVFG. The τVFG was applied to guide UAVs to approach the standoff circle exactly at the desired time, and tauG guidance was also adopted for phase intervals adjustment. Tracking parameters were optimized by sequential quadratic programming, and conflicts were resolved by artificial potential fields. Simulation results show that the τVFGbased method performs better in cooperative standoff tracking tasks with a lower computation load, smaller tracking errors, better flyability and higher flight safety.



Published: 14 January 2017
CLC:  V 249  
Cite this article:

YANG Zu qiang, FANG Zhou, LI Ping. Cooperative standoff tracking for multiUAVs based on tau vector field guidance. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 984-992.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2016.05.024     OR     http://www.zjujournals.com/eng/Y2016/V50/I5/984


基于tau矢量场制导的多无人机协同standoff跟踪方法

 针对有时间约束的多无人机(UAV)协同standoff跟踪需求,研究基于四维矢量场的多UAV协同制导方法.利用本征tauG制导策略能够依照期望时间对各运动状态进行同步规划的特性,构建tau制导矢量场,并在此基础上提出综合性多UAV协同standoff跟踪方法.该方法用tau矢量场导引各UAV的位置在期望时间准确收敛于目标圆,利用tauG策略调整UAV之间的相位间隔,应用序列二次规划对跟踪参数进行优化,并采用人工势场法进行协同避碰避障.仿真结果表明,基于tau矢量场制导的协同standoff跟踪方法计算负荷低,跟踪偏差小、制导策略可飞性好,飞行安全性高,能够更好地满足多UAV协同standoff跟踪的应用需求.

[1] FREW E W, LAWRENCE D A, MORRIS S. Coordinated standoff tracking of moving targets using lyapunov guidance vector fields [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2): 290306.
[2] WISE R A, RYSDYK R T. UAV coordination for autonomous target tracking [C]∥ Proceedings of the AIAA Guidance, Navigation, and Control Conference, Keystone: AIAA, 2006: 2124.
[3] OH H, TURCHI D, KIM S, et al. Coordinated standoff tracking using path shaping for multiple UAVs [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 348-363.
[4] KIM S, OH H, and TSOURDOS A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 557-566.
[5] 王树磊,魏瑞轩,郭庆,等. 面向协同standoff跟踪问题的无人机制导律 [J]. 航空学报,2014,35(6): 1684-1693.
WANG Shulei, WEI Ruixuan, GUO Qing, et.al. UAV guidance law for coordinated standoff target tracking [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1684-1693.
[6] LAWRENCE D A. Lyapunov Vector Fields for UAV Flock Coordination [C]∥ 2nd AIAA “Unmanned Unlimited” Conf. and Workshop & Exhibit.\[S.l\]: AIAA, 2003.
[7] CHEN H, CHANG K, AGATE C S. A dynamic path planning algorithm for UAV tracking [C]∥ Proceedings of SPIE Signal Processing, Sensor Fusion, and Target Recognition XVIII. Orlando: SPIE, 2009: 110.
[8] CHEN H, CHANG K, AGATE C S. UAV path planning with tangentplusLyapunov vector field guidance and obstacle avoidance [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 840-856.
[9] LEE D N. A theory of visual control of braking based on information about timetocollision [J]. Perception, 1976, 5(4): 437-459.
[10] LEE D N, REDDISH P E. Plummeting gannets: a paradigm of ecological optics [J]. Nature, 1981, 293(1): 293-294.
[11] LEE D N, DAVIES M N, GREEN P R. Visual control of velocity of approach by pigeons when landing [J]. Journal of Experimental Biology, 1993, 180(1): 85104.
[12] HECHT H ,SAVELSBERGH G J. Timetocontact [M]. Amsterdam: Elsevier, 2004.
[13] LEE D N. General tau theory: evolution to date [J]. Perception, 2009, 38(6): 837-858.
[14] 张书涛,张震,钱晋武. 基于Tau理论的机器人抓取运动仿生轨迹规划 [J]. 机械工程学报,2014,50(13): 42-51.
ZHANG Shutao, ZHANG Zhen, QIAN Jinwu. Bioinspired trajectory planning for robot catching movements based on the tau theory [J]. Journal of Mechanical Engineering,2014, 50(13): 42-51.
[15] KENDOUL F. Fourdimensional guidance and control of movement using timetocontact: Application to automated docking and landing of unmanned rotorcraft systems [J]. The International Journal of Robotics Research, 2014, 33(2): 237-267.
[16] ZHANG Z, XIE P,  MA O. Bioinspired trajectory generation for UAV perching movement based on tau theory [J]. International Journal of Advanced Robotic Systems, 2014, 11(1): 113.
[17] BOUSSON K ,MACHADO P F F. 4D trajectory generation and tracking for waypointbased aerial navigation [J]. WSEAS Transactions on Systems & Control, 2013, 8(3): 105-119.
[18] SCHOGLER B, PEPPING G J, LEE D N. TauGguidance of transients in expressive musical performance [J]. Experimental Brain Research, 2008, 189(3): 361-372.
[19] GOSS J, RAJVANSHI R, SUBBARAO K. Aircraft conflict detection and resolution using mixed geometric and collision cone approaches [C]∥ AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence: AIAA, 2004: 120.

[1] YANG Chun ning, FANG Jia wei, LI Chun, GE Hui. Hypersonic vehicle blended control methodology based on stability criterion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 422-428.
[2] TIAN Hua, ZHAO Wen jie, FANG Zhou, LI Ping. Guidance strategy of unpowered landing based on energy management for unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1999-2004.
[3] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[4] ZHAO Wen-jie, FANG Zhou, LI Ping. Attitude compensation algorithm based on error feedback of geomagnetic vector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1704-1709.
[5] ZHAO Wen-jie, FANG Zhou, LI Ping. Attitude compensation algorithm based on error feedback of geomagnetic vector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 0-00.
[6] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(1): 154-160.