Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Hydrogenation saturation of  aromatic compounds (naphthalene) in coal tar
XIA Liang-yan, XIA Zhi-xiang, FANG Meng-xiang, TANG Wei, WANG Qin-hui, LUO Zhong-yang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(3125KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Naphthalene was chosen as the model compound of aromatics in coal tar  to improve the aromatics hydrogenation process in coal tar hydrogenation. The influence of temperature, pressure, volume space velocity and hydrogen to oil volume ratio on  conversion of naphthalene, accompany with the selectivity of tetralin and decalin, was investigated over MoNiWP/γ-Al2O3 catalyst in a fixed bed reactor. The effect of heteroatoms was studied by adding different mass fractions of S (dibenzothiophene), N (quinoline) and O (o-cresol), respectively. And the hydrogenation of multiple aromatic compounds was primarily investigated. The results reveal that: MoNiWP/γ-Al2O3 catalyst shows great activity on the hydrogenation of naphthalene. Reaction temperature and volume space velocity have more obvious effect on  reaction. The optimized process conditions of hydrodearo-matization was at 320 ℃, 4 MPa, hydrogen to oil volume ratio of 600∶1 and volume space velocity of 2 h-1. Trace mass fraction of S and N hardly worked on naphthalene hydrogenation. When the mass fraction of S, N was over 015% and that of O was higher than 030%, the hydrogenation reaction, especially  saturation of the second benzene ring of naphthalene, was inhabited. Hydrogenation saturation reactions of different kinds of aromatic compounds influence mutually. Therefore, two step hydrogenation of coal tar is recommended and removing the phenols in coal tar in advance is also important.



Published: 28 August 2015
CLC:  TQ 530.2  
Cite this article:

XIA Liang-yan, XIA Zhi-xiang, FANG Meng-xiang, TANG Wei, WANG Qin-hui, LUO Zhong-yang. Hydrogenation saturation of  aromatic compounds (naphthalene) in coal tar. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 578-584.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.03.025     OR     http://www.zjujournals.com/eng/Y2015/V49/I3/578


煤焦油中芳烃(萘)的加氢饱和试验

为了优化煤焦油加氢制取燃料油过程中芳烃的加氢饱和反应工艺,选取萘作为煤焦油中芳烃的模型化合物,在固定床加氢反应器上,使用MoNiWP/γ-Al2O3催化剂,探究反应温度、压力、体积空速及氢油体积比对萘的转化率以及四氢萘和十氢萘选择性的影响.研究煤焦油中不同质量分数的二苯并噻吩(S)、喹啉(N)和邻甲酚(O)杂原子的存在对芳烃化合物加氢饱和的影响,并初步考察多种芳烃化合物加氢饱和的效果.结果表明:MoNiWP/γ-Al2O3催化剂在萘的加氢饱和反应中表现出良好的催化活性;反应温度和体积空速对萘加氢反应的影响比较明显,且萘加氢饱和的最佳反应条件为温度320 ℃,压力4 MPa,氢油体积比600∶1以及体积空速2 h-1;微量质量分数的S和N对萘的加氢饱和影响不大,但是当S、N质量分数高于015%,O质量分数高于030%时,萘加氢反应,尤其是第二个苯环的加氢饱和反应都受到明显的抑制;不同种类的芳烃类化合物的加氢饱和反应存在相互影响的现象.因此,建议在煤焦油加氢精制工艺中使用两步加氢,并对原料进行脱酚处理.

[1] 国家能源局. 国家能源科技“十二五”规划(2011-2015)[R].北京:国家能源局, 2011. 
[2] 肖瑞华. 煤焦油化工学[M]. 2版. 北京: 冶金工业出版社, 2009:8.
[3] SIDHPURIA K B,PATEL H A, PARIKH P A, et al. Rhodium nanoparticles intercalated into montmorillonite for hydrogenation of aromatic compounds in the presence of thiophene [J]. Applied Clay Science, 2009, 42(3): 386-390.
[4] 朱红英,张晔,邱泽刚,等.反应条件对萘饱和加氢的影响 [J].精细化工,2009,26(5):512-516.
ZHU Hong-ying, ZHANG Ye, QIU Ze-gang, et al. Effects of reaction conditions on saturated hydrogenation of naphthalene [J]. Fine Chemicals, 2009, 26(5): 512-516.
[5] ZHANG X F, ZHANG Q M, ZHAO A Q, et al. Naphthalene hydrogenation over silica supported nickel phosphide in the absence and presence of N-containing compounds [J]. Energy and Fuels, 2010, 24(7): 3796-3803.
[6] 中华人民共和国国家标准. 车用汽油, GB17930-2011[S]. 北京: 中国标准出版社, 2011. 
[7] 中华人民共和国国家标准. 车用柴油, GB19147-2013 [S]. 北京: 中国标准出版社, 2013.
[8] 余盼龙. 多联产煤焦油的蒸馏和加氢研究[D]. 杭州: 浙江大学, 2013:41-44.
YU Pan-long. Studies for distilling and hydroprocessing on coal tar from polygeneration system [D]. Hangzhou: Zhejiang University, 2013:41-44.
[9] 殷长龙,刘欢,张胜,等. 非负载型NiMoW催化剂催化萘一步加氢合成十氢萘[J]. 石油炼制与化工, 2013, 44(10): 53-58.
YIN Chang-long, LIU Huan, ZHANG Sheng, et al. Synthesis of decalin by one step hydrogenation of naphthalene on unsupported NiMoW catalyst [J]. Petroleum Processing and chemicals, 2013, 44(10): 53-58.
[10] 李望良,柳云骐,刘春英,等. MCM-41负载Mo-Ni-P催化剂的加氢性能[J]. 石油学报:石油加工,2004, 20(2): 69-74.
LI Wang-liang, LIU Yun-qi, LIU Chun-ying, et al. Hydrogenation properties of Mo-Ni-P catalyst on MCM-41 supported [J]. Acta Petrolei Sinica: Petroleum Processing Section, 2004, 20(2): 69-74.
[11] LYLYKANGAS M S, RAUTANEN P A, KRAUSE A O I. Liquid-phase hydrogenation kinetics of multicomponent aromatic mixtures on Ni/Al2O3[J]. Industrial and Engineering Chemistry Research, 2002, 41(23): 5632-5639.
[12] 任晓乾,余夕志,李凯,等. 高温下工业NiW/Al2O3催化剂上萘的加氢饱和反应[J]. 化学工程, 2007, 35(3): 30-33.
REN Xiao-qian, YU Xi-zhi, LI Kai, et al. Reactivity of saturated hydrogenation of naphthalene over the commercial NiW/Al2O3 catalyst at high reaction temperature [J]. Chemical Engineering, 2007, 35(3): 30-33.
[13] 鞠雪艳,张毓莹,胡志海,等. Ni-Mo加氢催化剂上1-甲基萘的饱和反应规律[J]. 石油学报:石油加工, 2012, 28(4): 538.
JU Xue-yan, ZHANG Yu-ying, HU Zhi-hai, et al. Hydrogenation saturation discipline of 1-methyl naphthalene over Ni-Mo catalyst [J]. Acta Petrolei sinica: Petroleum Processing Section, 2012, 28(4): 538.
[14] DEMIREL B, WISER W H, OBLAD A G, et al. Production of high octane gasoline components by hydroprocessing of coal-derived aromatic hydrocarbons [J]. Fuel, 1998, 77 (4): 301-311.
[15] NAGY G, POLCZMANN G, KALLO D, et al.Investigation of hydrodearomatization of gas oils on noble metal/support catalysts [J]. Chemical Engineering Journal, 2009, 154 (1): 307-314.
[16] EGOROVA M, PRINS R. Competitive hydrodesulfurization of 4, 6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3 [J]. Journal of Catalysis, 2004, 224(2): 278-287.
[17] 梁宇通. 萘在Ni2P/AC上的加氢饱和及硫氮化合物对其影响[D]. 大连: 大连理工大学, 2013:54-55.
LIANG Yu-tong. Hydrogenation of naphthalene on Ni2P/AC catalyst and influences of nitride and sulfide [D]. Dalian: Dalian University of Technology, 2013: 54-55.
[18] DING L H, ZHENG Y, ZHANG Z S, et al. HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities [J]. Applied Catalysis A: General, 2007, 319: 25-37.
[19] LU M H, WANG A J, LI X, et al. Hydrodenitrogenation of quinoline catalyzed by MCM-41-supported nickel phosphides [J]. Energy and Fuels, 2007, 21(2): 554-560.
[20] DUAN X P, TENG Y, WANG A J, et al. Role of sulfur in hydrotreating catalysis over nickel phosphide [J]. Journal of Catalysis, 2009, 261(2): 232-240.
[21] XIA L Y, XIA Z X, TANG W, et al. Hydrogenation of model compounds catalyzed by MCM-41-supported nickel phosphide [J]. Advanced Materials Research, 2014, 864: 366-372.
[22] BELTRAMONE A R, RESASCO D E, ALVAREZ W E, et al. Simultaneous hydrogenation of multiring aromatic compounds over NiMo catalyst [J]. Industrial and Engineering Chemistry Research, 2008, 47(19): 7161-7166.

[1] CHEN Ling hong, YAN Ming ming, WU Jian, WU Xue cheng, DONG Cui wei, CEN Ke fa. Soot volume fraction measurement in partially premixed flames using digital camera[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2069-2076.
[2] CHEN Ling hong, CHEN Xiang, WU Jian, WU Yan yan. Quantitative analysis of gaseous products evolved by coal combustion using TGFTIRMS technique[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 961-969.
[3] NI Ming jiang, ZHAO Le, FANG Meng xiang, LI Min, LI Chao,WANG Qin hui, LUO Zhong yang. Influence of catalyst on coal pyrolysis during CH4 atmosphere[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 320-326.
[4] TANG Wei, XIA Zhi-xiang, XIA Liang-yan, FANG Meng-xiang, WANG Qin-hui, LUO Zhong-yang. Simulation of low temperature coal tar hydrotreating-hyrocracking process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 924-929.