Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Reinforcement design of composite pavement continuously reinforced with basalt fiber reinforced plastics bars
GE Qian-ru,HUANG Zhi-yi,WANG Jin-chang,ZHANG Chen-xu
Institute of Transportation Engineering,Zhejiang University,Hangzhou 310058, China
Download:   PDF(1080KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The crack control indicator formulae were deduced by the analytical method in order to control the transverse cracks in the continuously reinforced concrete (CRC) pavement structure resulting from the temperature drop and shrinkage effect. The validity of formulae was verified by finite element simulation. Then the effects of basalt fiber reinforced plastics (BFRP) bars material properties and reinforcement program on cracks were specifically analyzed. Results showed that analytical method results accorded with the finite element simulation, which can be used in the reinforcement design of CRC+AC (asphalt concrete) composite pavement reinforced with BFRP bars. The effect of BFRP bar elasticity modulus on crack spacing and width is significant. Thus the relatively high elastic modulus is required to reduce the crack width. The bond stiffness of BFRP bars has great impact on crack spacing and width and it shouldn't be less than 20 GPa/m. Small diameter and spacing reinforcement program is benefit to control cracks under the same reinforcement ratio. Meanwhile the reinforcement ratio shouldn't be less than 0.5%. Crack spacing and width control indicators should be increased to 2.0 m and 1.0 mm respectively by taking the corrosion resistance of BFRP into consideration.



Published: 06 June 2018
CLC:  U 416  
Cite this article:

GE Qian-ru,HUANG Zhi-yi,WANG Jin-chang,ZHANG Chen-xu. Reinforcement design of composite pavement continuously reinforced with basalt fiber reinforced plastics bars. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 186-192.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.01.027     OR     http://www.zjujournals.com/eng/Y2015/V49/I1/186


BFRP连续配筋复合式路面配筋设计

为了控制连续配筋混凝土(CRC)路面结构在温降干缩作用下产生的横向裂缝,利用解析法推导裂缝控制指标的计算公式. 结合有限元模拟验证解析公式的有效性,分析玄武岩纤维(BFRP)筋的材料特性与配筋方案对裂缝的影响. 研究结果表明: 解析法与有限元模拟结果吻合,可以用于CRC+AC复合式路面BFRP配筋设计; BFRP筋弹性模量对裂缝间距与宽度的影响显著,为了减小裂缝宽度,采用弹性模量较高为宜;BRFP筋黏结刚度对裂缝间距与裂缝宽度的影响较大,黏结刚度不应低于20 GPa/m;相同配筋率时,小直径小间距方案对裂缝控制有利,配筋率不宜小于0.5%;考虑BFRP材料的耐腐蚀性,建议提高裂缝间距与宽度控制指标,分别不大于2.0 m和1.0 mm.

[1] ZOLLINGER D G, BUCH N, XIN D, et al. Performance of continuously reinforced concrete pavements: volume VII: summary [R]. Washington,DC: Federal Highway Administration,1999.
[2]KIM S M, WON M C,MCCULLOUGH B F. Numerical modeling of continuously reinforced concrete pavement subjected to environment loads [C]∥ Transportation Research Record. USA: [s. n.], 1998:76-89.
[3] NISHIZAWA T, SHIMENO S, KOMATSUBARA A. Study on thermal stresses in continuously reinforced concrete pavement [C]∥Transportation Research Record. USA: [s. n.], 1998:99-107.
[4] 王虎,胡长顺,王秉纲.连续配筋混凝土路面在横向荷载作用下的解析解[J].西安公路交通大学学报,1990,19(4): 15.
WANG Hu,HU Chang-shun,WANG Bing-gang. Analytic solution for continuously reinforced concrete pavement under transverse loading [J]. Journal of Xian Highway University,1990,19(4): 15.
[5] 白桃,黄晓明. 均匀温降下连续配筋混凝土路面(CRCP) 受力分析[J]. 武汉理工大学学报,2010,32(7): 55-59.
BAI Tao,HUANG Xiao-ming. Mechanics analysis of CRCP under uniform temperature drop condition [J]. Journal of Wuhan University of Technology, 2010,32(7): 55-59.
[6] 曹东伟,胡长顺. 连续配筋混凝土路面温度应力分析[J] .西安公路交通大学学报,2001,21(2): 14.
CAO Dong-wei,HU Chang-shun. Analysis of the thermal stress for continuously reinforced concrete pavement [J]. Journal of Xian Highway University,2001,21(2): 14.
[7] 王明超,张佐光,孙志杰,等. 连续玄武岩纤维及其复合材料耐腐蚀特性[J]. 北京航空航天大学学报,2006,32(10): 1255-1258.
WANG Ming-chao,ZHANG Zuo-guang,SUN Zhi-jie,et al. Corrosion resistance characteristic of continuous basalt fiber and its reinforcing composites [J]. Journal of Beijing University of Aeronautics and Astronautics,2006,32(10): 1255-1258.
[8] 李盛,刘朝晖,李宇峙. CRC+AC复合式路面结构层厚度对温度效应及车辙变形的影响[J]. 中国公路学报,2012,25(1): 21-28.
LI Sheng,LIU Zhao-hui,LI Yu-zhi. Influence of structure layer thickness of CRC+AC composite pavement on temperature effect and rutting deformation [J]. China Journal of Highway and Transport,2012,25(1): 21-28.
[9] 钟春玲. 连续配筋混凝土路面板底摩阻及端部锚固分析[D].长春: 吉林大学,2009.
ZHONG Chun-ling. CRCP analysis on road pavement resistance force and end anchoring [D]. Changchun: Jilin University,2009.
[10] 吴芳. 玄武岩纤维筋与混凝土粘结性能试验研究[D]. 大连:大连理工大学,2009.
WU Fang. The experimental research on bond behavior between BFRP rebar and the concrete [D]. Dalian: Dalian University of Technology,2009.
[11] 顾兴宇,陆佳颖. 连续玄武岩纤维筋水泥混凝土路面的配筋设计研究[J]. 公路交通科技:应用技术版,2009,5(30): 33-36.
GU Xing-yu, LU Jia-ying. Study on reinforcement design of CRCP reinforced with basalt fiber reinforced plastics bars [J]. Highway and Transportation Research: Application Technology Edition, 2009, 5(30): 33-36.
[12] JTG D40-2011, 公路水泥混凝土路面设计规范[S]. 北京:人民交通出版社, 2011.
[13] 杨慧. 连续配筋混凝土路面结构受力机理研究[D]. 重庆: 重庆交通大学, 2010.
YANG Hui. Study on mechanism of continuously reinforced concrete pavement CRCP [D]. Chongqing: Chongqing Jiaotong University, 2010.

[1] CHEN De, HAN Sen, SU Qian, HAN Xiao. Evaluation indicator of surface texture of asphalt pavement based on skid-resistance and noise reduction performance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 896-903.
[2] HUANG Zhi yi, WU Bin, KANG Cheng, ZHU Kai, WU Ke. Flame retardant and pavement performance of composite hydroxide modified asphalt[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 27-32.
[3] HUANG Zhi-yi, HU Xiao-yu, WANG Jin-chang, ZHANG Jun-shen. Applicability of middle and high-temperature susceptibility evaluation method for high-viscosity asphalt[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1448-1454.
[4] ZHU Kai,HUANG Zhi-yi,WU Ke,WU Bing,ZHANG Xin,ZHANG Chi. Hydrated lime modification of asphalt mixtures with improved fire performance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 963-968.
[5] LIN Cheng, WANG Jin-chang, HU Rong. Deformation of asphalt pavement considering performance degradation of cement-stabilized macadam[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2238-2245.
[6] GE Qian-ru,HUANG Zhi-yi,WANG Jin-chang,ZHANG Chen-xu. Reinforcement design of composite pavement continuously reinforced with basalt fiber reinforced plastics bars[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1-7.
[7] BAI Tao, HUANG Xiao-ming, LI Chang. Slope stability analysis considering spatial variability of soil properties[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(12): 2221-2226.
[8] YAN Ke-zhen, ZHOU Zhi-xiong. Cement pavement performance evaluation based on nonlinear fuzzy method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1379-1383.
[9] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(7): 1186-1191.
[10] ZHANG Kun, LI Dong-Qiang, LI Jian-Yu, TONG Gang-Jiang. Cooling effect of ventilated experimental embankment of
Qinghai-Tibet high-grade road
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(10): 1845-1850.