Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Design and analysis of graphene-based isolator
XIAO Bing-gang, XIE Zhi-yi, SUN Run-liang
College of Information Engineering, China Jiliang University,  Hangzhou 310018, China
Download:   PDF(1123KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel isolator which was applied in the 3rd generation telecommunication was theoretically designed and analyzed based on graphene. The proposed isolator is composed of two wire grid polarizers and one Faraday rotator. The Faraday rotator is composed of Si/SiO2 thin films, multilayer graphenes and quartz substrate. Because the graphene in bias magnetic field has gyrotropy and non-reciprocity properties, when the plane wave is propagating in both directions of the isolator, the electric field of the plane wave will be inclined ±30°. Thus the forward transmitted plane wave will pass through the isolator with almost identical, but the backward transmitted plane wave will be totally reflected. The isolation was calculated by using the transmission matrix method. Results indicate that the isolator is in good isolation performance with the isolation above 12 dB and the insertion loss lower than -1.63 dB in the working frequency range from 1.8 to 2.2 GHz.



Published: 06 June 2018
CLC:  TN 61  
Cite this article:

XIAO Bing-gang, XIE Zhi-yi, SUN Run-liang. Design and analysis of graphene-based isolator. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 42-47.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.01.007     OR     http://www.zjujournals.com/eng/Y2015/V49/I1/42


基于石墨烯的隔离器理论设计与分析

基于石墨烯,理论设计与分析了应用于3G通信领域的新型隔离器.隔离器由2个线栅偏振器和1个旋转器组成,旋转器由硅/二氧化硅薄膜、多层石墨烯和二氧化硅基板叠加而成.由于石墨烯在磁场偏置下具有法拉第效应和非互异性,当平面波从正、反两个方向入射隔离器时,电场沿入射方向发生±30°的偏转,使得正向传输的平面波几乎无损通过,而反向传输的平面波被全反射,实现了隔离.利用传输矩阵法计算了隔离度,结果表明,设计的隔离器在工作频段1.8~2.2 GHz内具有良好的隔离特性,隔离度均在12 dB以上,且插入损耗均小于-1.63 dB.

[1] GEIM A K, NOVOSELOV K S. The rise of grapheme [J]. Nature materials, 2007, 6(3): 183-191.
[2] KATSNELSON M I. Graphene: carbon in two dimensions [J]. Materials today, 2007, 10(1): 20-27.
[3] DU X, SKACHKO I, DUERR F, et al. Fractional quantum Hall effect and insulating phase of Dirac electrons in grapheme [J]. Nature, 2009, 462(7270): 192-195.
[4] NANDAMURI G, ROUMIMOV S, SOLANKI R. Chemical vapor deposition of graphene films [J]. Nanotechnology, 2010, 21(14): 145-604.
[5] MIYATA Y, KAMON K, OHASHI K, et al. A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling [J]. Applied Physics Letters, 2010, 96(26): 263105-263105-3.
[6] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
[7] KNOCH J, CHEN Z, APPENZELLER J. Properties of metal–graphene contacts [J]. Nanotechnology, 2012, 11(3): 513-519.
[8] KRASHENINNIKOV A V, NIEMINEN R M. Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study [J]. Theoretical Chemistry Accounts, 2011, 129(3/4/5): 625-630.
[9] LIU G, TEWELDEBRHAN D, BALANDIN A A. Tuning of graphene properties via controlled exposure to electron beams [J]. Nanotechnology, 2011, 10(4): 865-870.
[10] LIAO L, LIN Y C, BAO M, et al. High-speed graphene transistors with a self-aligned nanowire gate [J]. Nature, 2010, 467(7313): 305-308.
[11] GHOSH S, BACHILO S M, SIMONETTE R A, et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes [J]. Science, 2010, 330(6011): 1656-1659.
[12] SOUNAS D L, CALOZ C. Gyrotropy and nonreciprocity of graphene for microwave applications [J]. Microwave Theory and Techniques, 2012, 60(4): 901-914.
[13] CRASSEE I, LEVALLOIS J, WALTER A L, et al. Giant Faraday rotation in single-and multilayer grapheme [J]. Nature Physics, 2010, 7(1): 48-51.
[14] SOUNAS D, CALOZ C. Field displacement in a grapheme loaded waveguide [C]∥Telecommunication in Modern Satellite Cable and Broadcasting Services (TELSIKS). Nis,Serbia: IEEE, 2011: 25-26.
[15] SOUNAS D L, CALOZ C. Gyrotropy and nonreciprocity of graphene for microwave applications [J]. Microwave Theory and Techniques, 2012, 60(4): 901-914.
[16] SOUNAS D L, CALOZ C. Graphene-based non-reciprocal spatial isolator [C]∥Antennas and Propagation (APSURSI).Washington: IEEE, 2011: 1597-1600.
[17] 余声明. 环行器/隔离器在微波通信中的应用[J]. 磁性材料及器件, 2003, 34(1): 25-29.
YU Sheng-ming. Application of circulator/isolator in microwave communication [J]. Journal of Magnetic Materials and Devices, 2003, 34(1): 25-29.
[18] 陈宁. X波段宽带微带隔离器环行器组件仿真设计和实现[D]. 成都:电子科技大学, 2011.
CHEN ning. Designation and simulation of shielded-type microstrip isolator-circulator components in X band [D]. Chengdou: University of Electronic Science and Technology of China, 2011.
[19] LOVAT G. Equivalent circuit for electromagnetic interaction and transmission through graphene sheets [J]. Electromagnetic Compatibility, 2012, 54(1): 101-109.
[20] HANSON G W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide [J]. Journal of Applied Physics, 2008, 104(8): 084314-084314-5.
[21] SOUNAS D L, CALOZ C. Graphene for highly tunable non-reciprocal electromagnetic devices [C]∥Antennas and Propagation Society International Symposium (APSURSI). Chicago: IEEE, 2012: 12.
[22] 刘云飞. 金属栅网的亚毫米波散射特性研究[D].南京:南京航空航天大学, 2005.
LIU Yun-fei. Study of the scattering characteristics of metallic wire grids at submillimeter wavelengths [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005.

No related articles found!