Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
high accuracy Chinese predicate recognition method combining lexical and syntactic feature
HAN Lei, LUO Sen-lin, PAN Li-min, WEI Chao
School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Download:   PDF(834KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A method which merges lexical with syntactic features and combines C4.5 algorithm and rules was proposed for the systematic study of Chinese predicates. The method extracts lexical and syntactic features respectively. According to the lexical features, the suspicious predicate and its number are obtained. The lexical features are filtered by manual rules to identify the predicate which conforms to the rules. Basing on the lexical and syntactic features, the ones which do not conform to the rules are identified using C4.5. On the basis of Beijing forest studio-chinese tagged corpus(BFS-CTC) whose total number of predicates is more than 20 000, features and parameter choice experiment, syntactic features verification experiment, the amount of training data choice experiment and the method precision experiment were carried out to study the relations between predicate recognition results and the factors including lexical and syntactic features,function of the syntactic features and the amount of training data. The results show that the syntactic features effectively improves the effect of predicate recognition, as the amount of training data increasing the precision is convergence and the high precision reaches 99%.



Published: 01 December 2014
CLC:  TP 391  
Cite this article:

HAN Lei, LUO Sen-lin, PAN Li-min, WEI Chao. high accuracy Chinese predicate recognition method combining lexical and syntactic feature. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2107-2114.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.12.002     OR     http://www.zjujournals.com/eng/Y2014/V48/I12/2107


融合词法和句法特征的汉语谓词高精度识别方法

为了对汉语谓词进行系统的研究,提出一种融合词法和句法特征、结合C4.5机器学习和规则进行谓词识别的方法.该方法对句子的词法信息和句法信息分别进行特征提取,通过词法特征提取得到句子中可疑谓词及其个数,使用人工总结规则对词法特征进行规则过滤,对符合规则条件的样本直接给出结果,融合不符合规则样本的词法和句法特征,使用C4.5进行分类得到谓词识别结果.实验中,采用谓词总量达到20 000条以上的BFS-CTC标注语料库进行特征和参数选择、句法特征验证、训练数据量选择和算法准确性等一系列的实验,对谓词识别效果的影响进行研究.结果表明:句法特征能有效提升谓词识别效果,随着训练数据量的增加谓词识别准确率趋于平缓,达到了99%的高准确率.

[1] 罗森林, 韩磊, 潘丽敏,等. 汉语句义结构模型及其验证[J]. 北京理工大学学报, 2013, 33(2): 166-171.
LUO Sen-lin, HAN Lei, PAN Li-min, et al. Chinese sentential semantic mode and verification[J]. Transactions of Beijing Institute of Technology, 2013, 33(2): 166-171.
[2] XUE N. Labeling chinese predicates with semantic roles[J]. Computational Linguistics, 2008, 34(2): 225-255.
[3] 李国臣, 孟静. 利用主语和谓语的句法关系识别谓语中心词[J]. 中文信息学报, 2005, 19(01): 17.
LI Guo-chen, MENG Jing. A method of identifying the predicate head based on the correspondence between the subject and the predicate[J]. Journal of Chinese Information Processing, 2005, 19(01): 17.
[4] 汪红林, 王红玲, 周国栋. 语义分析中谓词标识的特征工程[J]. 计算机工程与应用, 2010, 46(9): 134-137.
WANG Hong-lin, WANG Hong-lin, ZHOU Guo-dong. Feature engineering for predicate identification and classification in semantic analysis[J]. Computer Engineering and Applications, 2010, 46(9): 134-137.
[5] 龚小谨, 罗振声, 骆卫华. 汉语句子谓语中心词的自动识别[J]. 中文信息学报, 2003,17(02): 7-13.
GONG Xiao-jin, LUO Zhen-sheng, LUO Wei-hua. Recognizing the predicate head of Chinese sentences \[J\]. Journal of Chinese Information Processing,2003, 17(02): 7-13.
[6] 罗森林, 刘盈盈, 冯扬,等. BFS-CTC汉语句义结构标注语料库构建方法[J]. 北京理工大学学报, 2012, 32(3): 311-315.
LUO Sen-lin, LIU Ying-ying, FENG Yang, et al. Method of building BFS-CTC: a Chinese tagged corpus of sentential semantic structure[J]. Transactions of Beijing Institute of Technology, 2012, 32(3): 311-315.
[7] 刘盈盈, 罗森林, 冯扬,等. BFS-CTC汉语句义结构标注语料库[J]. 中文信息学报, 2013, 27(01): 72-80.
LIU Ying-ying, LUO Sen-lin, FENG Yang, et al. BFS-CTC: A chinese corpus of sentential semantic structure[J]. Journal of Chinese Information Processing,2013, 27(01): 7280.
[8] 贾彦德. 汉语语义学[M]. 北京: 北京大学出版社, 2005: 214-249.
[9] 俞士汶, 段慧明, 朱学锋,等. 北京大学现代汉语语料库基本加工规范[J]. 中文信息学报, 2002, 16(5): 49-64.
YU Shi-wen, DUAN Hui-ming, ZHU Xue-feng, et al. The basic processing of contemporary chinese corpus at Peking University SPECIFICATION[J]. Journal of Chinese Information Processing, 2002, 16(5): 49-64.
[10] 俞士汶, 段慧明, 朱学锋,等. 北京大学现代汉语语料库基本加工规范(续)[J]. 中文信息学报, 2002, 16(6): 58-64.
YU Shi-wen, DUAN Hui-ming, ZHU Xue-feng, et al. The basic processing of contemporary chinese corpus at Peking University SPECIFICATION[J]. Journal of Chinese Information Processing, 2002, 16(6): 58-64.
[11] 周强.汉语语料库的短语自动划分和标注研究[D].北京:北京大学, 2002.
ZHOU Qiang. Phrase bracketing and annotating on chinese language corpus[D].Beijing: Peking University, 2002.
[12] QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986(1): 81-106.
[13] HALL M, FRANK E, HOLMES G, et al. The WEKA data mining software: an update[J]. ACM Sigkdd Explorations Newsletter, 2009, 11(1): 1018.
[14] 陈功, 罗森林, 陈开江,等. 结合结构下文及词汇信息的汉语句法分析方法[J]. 中文信息学报, 2012, 26(01): 9-15.
CHEN Gong, LUO Sen-lin, CHEN Kai-jiang, et al. Method for layered chinese parsing based on subsidiary contest and lexical information[J]. Journal of Chinese Information Processing, 2012, 26(01): 9-15.

[1] HE Xue-jun, WANG Jin, LU Guo-dong, LIU Zhen-yu, CHEN Li, JIN Jing. 3D head portrait sculpture by industrial robot based on triangular mesh slicing and collision detection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1104-1110.
[2] WANG Hua, HAN Tong-yang, ZHOU Ke. KeyGraph-based community detection algorithm for public security intelligence[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1173-1180.
[3] YOU Hai-hui, MA Zeng-yi, TANG Yi-jun, WANG Yue-lan, ZHENG Lin, YU Zhong, JI Cheng-jun. Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1163-1172.
[4] BI Xiao-jun, WANG Jia-hui. Teaching-learning-based optimization algorithm with hybrid learning strategy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 1024-1031.
[5] JIANG Xin-long, CHEN Yi-qiang, LIU Jun-fa, HU Li-sha, SHEN Jian-fei. Wearable system to support proximity awareness for people with autism[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 637-647.
[6] WANG Liang, YU Zhi-wen, GUO Bin. Moving trajectory prediction model based on double layer multi-granularity knowledge discovery[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 669-674.
[7] LIAO Miao, ZHAO Yu-qian, ZENG Ye-zhan, HUANG Zhong-chao, ZHANG Bing-kui, ZOU Bei-ji. Automatic segmentation for cell images based on support vector machine and ellipse fitting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 722-728.
[8] MU Jing-jing, ZHAO Xin-yue, HE Zai-xing, ZHANG Shu-you. Contour reconstruction of overlapped bubbles based on concave-convex transformation and circle fitting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 714-721.
[9] HUANG Zheng-yu, JIANG Xin-long, LIU Jun-fa, CHEN Yi-qiang, GU Yang. Fusion feature based semi-supervised manifold localization method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 655-662.
[10] LIU Lei, YANG Peng, LIU Zuo-jun. Locomotion-Mode recognition using multiple kernel relevance vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 562-571.
[11] GUO Meng-li, DA Fei-peng, DENG Xing, GAI Shao-yan. 3D face recognition based on keypoints and local feature[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 584-589.
[12] DAI Cai-yan, CHEN Ling, LI Bin, CHEN Bo-lun. Sampling-based link prediction in complex networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 554-561.
[13] ZHANG Ya nan, CHEN De yun, WANG Ying jie, LIU Yu peng. Incremental graph pattern matching based dynamic recommendation method for cold-start user[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 408-415.
[14] WANG Hai jun, GE Hong juan, ZHANG Sheng yan. Fast object tracking algorithm via kernel collaborative presentation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 399-407.
[15] LIU Yu peng, QIAO Xiu ming, ZHAO Shi lei, MA Chun guang. Deep combination of large-scale features in statistical machine translation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 46-56.