Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Suggestions for reinforcement increment in concrete floor slabs under different temperature and displacement boundary conditions
XIAO Nan,YANG Feng-chun
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058,China
Download:   PDF(2037KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to quantitatively determine the temperature effects on the bearing capacity and width of crack in slabs, on the basis of finite element method analyses of temperature field and stress field,  two kinds of floor slabs with different temperature and various displacement constraint boundary conditions were analyzed employing ANSYS software. The results show that temperature stresses have greater impact on crack width than on bearing capacity in floor slab. After considering the temperature stress, the mechanical behaviors of slabs are transformed from pure bending to bending combined with axial tension, hence, reinforcements of floor slabs required for bearing capacity should be increased. Meanwhile, the temperature will also lead to the crack width broadening. In practice application, the floor slabs subjected to obvious temperature impacts can still be calculated as pure bending elements in order to simplify computation, however, whose reinforcements required for bearing capacity and crack width resisting are suggested to increase 15% and 25%, respectively, so as to safely counteract the temperature influences on the increment of reinforcement stress in floor slabs.



Published: 01 November 2014
CLC:  TU 312  
Cite this article:

XIAO Nan,YANG Feng-chun. Suggestions for reinforcement increment in concrete floor slabs under different temperature and displacement boundary conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1925-1932.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.11.003     OR     http://www.zjujournals.com/eng/Y2014/V48/I11/1925


不同温度和位移边界下混凝土楼板配筋建议

为了定量地确定温度对楼板承载能力和裂缝宽度的影响,在温度场和应力场有限元分析理论的基础上,采用ANSYS软件,对角板和边板2种温度边界条件和多种位移约束条件下的楼板,进行数值模拟分析.结果表明,相对于楼板的承载能力,温度应力对裂缝的影响更大.考虑温度应力后,楼板将从纯弯构件变成拉弯构件,满足承载能力的楼板配筋将增加,同时,温度应力将导致楼板裂缝宽度增大.在实际应用中,为简化计算,对于有明显温差影响的楼板,仍可按纯弯构件计算,但满足此纯弯构件承载能力和裂缝宽度所得配筋量,建议分别增加15%和25%,以抵消温度应力所致钢筋应力的增量.

[1] ACI 318M-05. Building code requirements for structural concrete and commentary [S]. Farmington Hills: American Concrete Institute, 2005.
[2] EN1992-1-1. Design of concrete structure-Part 1-1: General rules and rules for buildings [S]. Brussels: CEN, 2004.
[3] GB50010-2010. 混凝土设计规范[S]. 北京: 建筑工业出版社, 2010.
GB50010-2010.Code for design of concrete structure\[S\].Beijing:China Building Industry Press,2010.
[4] 王曦晗, 王钰. 变形作用引起楼板裂缝问题的几点分析[J]. 黑龙江科技信息, 2010, (22): 266-269.
WANG Xi-han, WANG Yu. Analysis of floor slabs crack problems caused by deformation [J]. Heilongjiang Science and Technology Information, 2010, (22): 266-269.
[5] 蒯行成, 田建华, 任毕乔. 框筒结构楼板的温度裂缝分析[J]. 湖南大学学报, 2002, 29(5): 20-24.
KUAI Xing-cheng, TIAN Jian-hua, REN Bi-qiao. Analysis of temperature cracks of floor slabs in frame-tube structures [J]. Journal of Hunan University, 2002, 29(5): 20-24.
[6] 李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 北京:中国电力出版社, 2007: 203-210.
[7] 孔祥谦. 有限单元法在传热学中的应用[M]. 北京: 科学出版社, 1998: 127.
[8] VECCHIO F J, SATO J A. Thermal gradient effects in reinforced concrete frame structures [J]. ACI Structural Journal, 1990, 87(3): 262-275.
[9] 张建荣, 刘照球, 刘文燕. 混凝土表面自然对流换热系数的试验研究[J]. 四川建筑科学研究, 33(5): 232-235.
ZHANG Jian-rong, LIU Zhao-qiu, LIU Wen-yan. Experimental research on natural convective coefficient of concrete surface [J]. Sichuan Building Science, 2007, 33(5): 232235.
[10] 浙江大学. 建筑结构静力计算实用手册[M]. 北京: 中国建筑工业出版社, 2009: 152-161.
[11] GB50009-2001. 建筑结构荷载规范[S]. 北京: 建筑工业出版社, 2001.
GB50009-2001.Load code for the design of building structure\[S\].Beijing:China Building Industry press,2001.
[12] SOKOLNIKOFF I S. Mathematical theory of Elasticity [M]. New York: McGRAW-HILL BOOK COMPANY, Inc. 1956: 358-364.
[13] LU F, GONG M, XUE H, et al. Analysis on the temperature distribution and thermal effects in corner-pumped slab lasers [J]. Optics and Lasers in Engineering, 2007, 45(1): 43-48.
[14] 张建荣, 刘照球. 混凝土对流换热系数的风洞试验研究[J]. 土木工程学报, 2006, 39(9): 39-42.
ZHANG Jian-rong, LIU Zhao-qiu. A study on the convective heat transfer coefficient of concrete in wind tunnel experiment [J]. China Civil Engineering Journal,2006, 39(9): 4348.
[15] TAKAHITO G, TAKASHI K, ICHIRO N. Axisymmetric quasi-static thermal stresses in an infinite slab [J]. International Journal of Solids and Structures, 1973, 9(2): 243-255.
[16] 潘建伍, 曹双寅, 曹新明. 砖混结构现浇钢筋混凝土楼板温度应力分析[J]. 工业建筑,2002, 32(6): 33-35.
Pan Jian-wu, CAO Shuang-yin, CAO Xinming. Thermal stress analysis of the cast-in-place reinforced concrete floorslabs of mansonry structures [J]. Industrial Construction, 2002, 32(6): 243-255.
[17] 殷敏, 杨长林, 赵二良. 钢筋混凝土现浇板裂缝原因分析[J]. 科技创新导报, 2011, (6): 65-66.
YIN Min, YANG Chang-lin, ZHAO Er-liang. Analysis of cracks in cast-in-place reinforced concrete [J]. Science and Technology Innovation Herald, 2011, (6): 65-66.

[1] QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long. Influence of semi-rigid connections on wind-induced responses of transmission towers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1082-1089.
[2] LOU Wen juan, LUO Gang, HU Wen kan. Calculation method for equivalent static wind loads and wind load adjustment coefficients for transmission lines[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2120-2127.
[3] WANG Lei,LIANG Shu guo,WANG Ze kang,ZHANG Zheng wei. Effect of aerodynamic optimization to across-wind response of  super tall buildings[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1239-1246.
[4] SHEN Guo hui, YAO Dan, YU Shi ce, LOU Wen juan, XING Yue long, PAN Feng. Wind tunnel test of wind field characteristics on isolated hill and two adjacent hills[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 805-812.
[5] LIANG Xiao-tian, YUAN Xing-fei. Performance analysis of buckling in compressive strut supported by prestressed cables[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 505-510.
[6] LOU Wen-juan, WANG Jia-wei, YANG Lun, CHEN Yong. Simulation of three-dimensional fluctuating wind velocity field #br# upon thunderstorm downburst[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1162-1169.
[7] WANG Lei, LIANG Shu-guo, ZOU Liang-hao, TANG Huai-qiang, WANG Shu-liang. Investigation on VIV system vibration frequency of super high-rise building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 805-812.
[8] ZHAO Yang,LIN Yin,YU Shi-ce. Wind-tunnel test of wind loads on large cylindrical structures with very low aspect ratio[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 820-826.
[9] SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, GUO Yong, SUN Bing-nan. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 704-710.
[10] SHEN Guo-hui, CHEN Zhen, XING Yue-long, GUO Yong, SUN Bing-nan. Bearing capacity of steel tubular joints under compression in
direction of annular ribbed plate
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(1): 168-173.
[11] . Wind-resistant safety analysis of light-weight steel portal frame structures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(12): 2141-2145.
[12] SHEN Guo-hui, WANG Ning-bo, REN Tao, SHI Zhu-yuan, LOU Wen-juan. Comparison of time domain and frequency domain methods to
obtain wind-induced responses of civil engineering structures
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1573-1578.
[13] YANG Lun,HUANG Ming-feng,LOU Wen-juan. Hybrid simulation of three dimensional fluctuating wind fields around tall buildings[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(5): 824-830.
[14] LU Dan, LI Cheng-ming. Mesh update method for fluid-solid coupling computation
based on embedding spatial deformation method
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 508-514.
[15] NING Peng-fei , TANG De-gao. Influence analysis of ignition location departure on blast load of
close range internal blast
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(12): 2252-2258.