Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Optical analysis and comparison of two-stage solar dish system
ZHANG Yan-mei, XIAO Gang, LUO Zhong-yang, YANG Tian-feng, GUO Kai-kai, NI Ming-jiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(514KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Four types of secondary mirrors (SM) were compared, including an ellipsoidal, a hyperboloidal, a planar and a paraboloidal type. A primary dish with a diameter of 1 000 mm and a varying rim angle was employed in each system. The concentrated spots were on the vertexes of the dishes and the numerical aperture of the SM was 02 except for the paraboloidal system. As to the ellipsoidal system, flux density on the receiver increases when rim angle<90° and then decreases. The relative location and shading percentage of the SM decreases. As to the hyperboloidal system, when rim angle increases, flux density varies little. The relative location of the SM increases and shading percentage decreases. Both the ellipsoidal and hyperboloidal systems are suitable to cases which need low concentrated spots. As to the planar system, flux density increases when rim angle<45° and then decreases. The relative location of the SM is invariable and shading percentage increases. A planar SM is suitable to a system which needs a high concentrated spot. As to the paraboloidal system, when rim angle increases, the flux density increases while the relative location and shading percentage of the SM are invariable. A paraboloidal SM is suitable for low concentration ratio system. The hyperboloidal system has better tolerance to errors than the ellipsoidal system while the tolerance of the planner system is the best.



Published: 04 August 2014
CLC:  TK 513  
Cite this article:

ZHANG Yan-mei, XIAO Gang, LUO Zhong-yang, YANG Tian-feng, GUO Kai-kai, NI Ming-jiang. Optical analysis and comparison of two-stage solar dish system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1260-1264.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.07.017     OR     http://www.zjujournals.com/eng/Y2014/V48/I7/1260


太阳能碟式二次反射系统的光路分析与比较

比较直径为1 000 mm、不同边缘角的碟式一次镜结合旋转椭圆面型、旋转双曲面型、平面型及旋转抛物面型二次镜的聚光效果.除旋转抛物面型二次反射系统,其他系统的焦点位于一次镜顶点,二次镜数值孔径为02.随着边缘角的增加,旋转椭圆面型二次反射系统接收板中心的能流密度先增大后减小,二次镜的相对位置降低,遮光率减小;旋转双曲面型二次反射系统的能流密度变化不大,二次镜的相对位置升高,遮光率减小;两者均适用于二次反射低焦系统.随着边缘角的增大,平面型二次反射系统的能流密度先增大后减小;二次镜的相对位置不变,遮光率增大,适用于二次反射高焦系统.旋转抛物面型二次反射系统的能流密度随着边缘角的增大而增大,二次镜的相对位置和遮光率不变,适用于低倍聚光系统.对于误差的容忍性,平面型二次反射系统最优;旋转双曲面型优于旋转椭圆面型二次反射系统.

[1]RABL A. Tower reflector for solar power plant [J]. Solar Energy, 1976, 18(3): 269-271.
[2]MAUK C E, PRENGLE J R H W, SUN E C. Optical and thermal analysis of a cassegrainian solar concentrator [J]. Solar Energy, 1979, 23(2): 157-167.
[3]FEUERMANN D, GORDON J M. Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight [J]. Solar Energy, 1999, 65(3): 159-170.
[4]FEUERMANN D, GORDON J M. High-concentration photovoltaic designs based on miniature parabolic dishes [J]. Solar Energy, 2001, 70(5): 423-430.
[5]GORDON J M. Tailoring optical systems to optimized photobioreactors [J]. International Journal of Hydrogen Energy, 2002, 27(11): 1175-1184.
[6]FEUERMANN D, GORDON J M, HULEIHIL M. Solar fiber-optic mini-dish concentrators: first experimental results and field experience [J]. Solar Energy, 2002, 72(6): 459-472.
[7]GORDON J M, FEUERMANN D. Optical performance at the thermodynamic limit with tailored imaging designs [J]. Applied Optics, 2005, 44(12): 2327-2331.
[8]CHEN C F, LIN C H, JAN H T, et al. Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method [J]. Optics Communications, 2009, 282(3): 360-366.
[9]JIANG S L, HU P, MO S P, et al. Modeling for two-stage dish concentrating spectral beam splitting photovoltaic/thermal system [C]∥Proceedings of Asia-Pacific Power and Energy Engineering Conference (APPEEC 2009).Wuhan: IEEE, 2009.
[10] JIANG S L, HU P, MO S P, et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/ thermal system using spectral beam splitting technology [J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1686-1696.
[11]KRIBUS A, ZAIBEL R, SEGAL A. Extension of the hermite expansion method for cassegrainian solar central receiver systems [J]. Solar Energy, 1998, 63(6): 337-343.
[12]KARABULUT H, YUCESU H S, CINAR C, et al. Construction and testing of a dish/stirling solar energy unit [J]. Journal of the Energy Institute, 2009, 82(4): 228-232.
[13] SCHLEGEL G O, BURKHOLDER F W, KLEIN S A, et al. Analysis of a full spectrum hybrid lighting system [J]. Solar Energy, 2004, 76(4): 359-368.
[14] 林海浩. 聚光光伏发电光学系统优化设计研究 [D]. 杭州: 浙江工业大学, 2009.
LIN Hai-hao. The optimum design and study of the concentrating photovoltaic optical system [D]. Hangzhou: Zhejiang University of Technology, 2009.
[15]KALOGIROU S. Parabolic trough collector system for low temperature steam generation: design and performance characteristics [J]. Applied Energy, 1996, 55(1): 119.
[16] SCHLEGEL G O, BURKHOLDER F W, KLEIN S A, et al. Analysis of a full spectrum hybrid lighting system [J]. Solar Energy, 2004, 76(4): 359-368.
[17] 林海浩. 聚光光伏发电光学系统优化设计研究 [D]. 杭州: 浙江工业大学, 2009.
LIN Hai-hao. The optimum design and study of the concentrating photovoltaic optical system [D]. Hangzhou: Zhejiang University of Technology, 2009.
[18] KALOGIROU S. Parabolic trough collector system for low temperature steam generation: design and performance characteristics [J]. Applied Energy, 1996, 55(1): 119.

[1] CHEN Huan, WANG Hong-mei, YU Zi-tao, HU Ya-cai, ZHANG Liang, NI Yu, FAN Jian-ren. Experimental investigation of a natural circulation parabolic trough
collector system for medium-high temperature steam generation
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1666-1670.