Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Power failure model and seismic force reduction of steel liquid storage tank
YANG Hong-kang1,2, GAO Bo-qing1
1.Spatial Structure Research Center, Zhejiang University, Hangzhou 310058, China;2.Country Garden Property Development Limited Company,Foshan 528312,China
Download:   PDF(1260KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A power failure model in response spectrum format was conducted through unidirectional dynamic pushover analysis of fluid-solid coupled system in order to reflect the progressive failure trend of liquid storage tanks and rationally quantify the elastoplastic seismic force. Then generalized constitutive relations with isotropic hardening were established, and seismic force reduction factor Ry was iteratively solved under specific ductility values. Results show that seismic force reduction factor based on power failure model has slight variability, and seismic force reduction factor based on bilinear hysteretic model will cause over-conservative or over-risky seismic force reduction. Forty severest ground motions were selected and classified by site types. The mean values of Ry based on power failure model were slightly lower than target ductility values, which is more in line with equal displacement rule of long-period structures. The specified seismic force reduction factor values in GB50341 and SH/T3026 are higher than those in API650 and EN1998-4. The suggestion is that Ry should be adjusted to 20 and the effects of boundary conditions need to be further refined.



Published: 04 August 2014
CLC:  TU 33  
  TE 972  
Cite this article:

YANG Hong-kang, GAO Bo-qing. Power failure model and seismic force reduction of steel liquid storage tank. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1202-1208.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.07.009     OR     http://www.zjujournals.com/eng/Y2014/V48/I7/1202


钢制储液罐的幂次失效模型及地震力折减

为了反映钢制储液罐的渐进失效趋势并合理地量化弹塑性地震力,采用流固耦合系统的单向动力推覆分析,建立反应谱层次的幂次失效模型.根据该模型构建等向强化的广义本构关系,在特定延性下迭代求解地震力折减系数Ry.结果表明,幂次失效模型下的地震力折减系数变异性较小,双线性滞回模型下的地震力折减系数会导致过于保守或偏于危险的地震力折减.选取40条最不利地震动并按场地分类,幂次失效模型下的地震力折减系数的均值略低于目标延性值,更符合长周期结构的等位移准则.GB50341与SH/T3026规定的地震力折减系数高于API650与EN1998-4,建议将地震力折减系数调整至20,应进一步细化边界条件的影响.

1]COOPER T W. A study of the performance of petroleum storage tanks during earthquakes, 1933-1995 [R]. Gaithersburg: National Institute of Standards and Technology, 1997.
[2]EN1998-4. Design of structures for earthquake resistance Part 4: silos, tanks and pipelines [S]. Brussels: European Committee for Standardization(ECS), 2006.
[3]TAZUKE H, YAMAGUCHI S, ISHIDA K, et al. Seismic proving test of equipment and structures in thermal conventional power plant [J]. Journal of Pressure Vessel Technology, 2002, 124(2): 133-143.
[4]PEEK R, EL-BKAILY M. Postbuckling behavior of unanchored steel tanks under lateral loads [J]. Journal of Pressure Vessel Technology, 1991, 113(3): 423-428.
[5]ITO T, MORITA H, HAMADA K, et al. Investigation on buckling behavior of cylindrical liquid storage tanks under seismic excitation: 1st report-investigation on elephant foot bulge [C]∥ Proceedings of the ASME Pressure Vessels and Piping Conference. Cleveland: [s. n.], 2003: 193-201.
[6]CEC160:2004. 建筑工程抗震性态设计通则 [S]. 北京: 中国计划出版社, 2004.
[7]GB50011-2010. 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.
[8]GB50341-2003. 立式圆筒形钢制焊接油罐设计规范 [S]. 北京: 中国计划出版社, 2003.
[9]SH/T3026-2005. 钢制常压立式筒形储罐抗震鉴定标准[S]. 北京: 中国石化出版社, 2005.
[10]API650. Welded steel tanks for oil storage [S]. Washington: American Petroleum Institute (API), 2008.
[11]BORZI B, ELNASHAI A S. Refined force reduction factors for seismic design [J]. Engineering Structures, 2000, 22(10): 1244-1260.
[12]杨宏康, 高博青. 基于动力推覆方法的储液罐抗震分析 [J]. 工程力学, 2013, 30(11): 153-159.
YANG Hong-kang, GAO Bo-qing. Seismic analysis of liquid storage tanks based on dynamic pushover method [J]. Engineering Mechanics, 2013, 30(11): 153-159.
[13]SHERMAN W C. Controversial issues in seismic design of liquid-containing structures [C]∥ Structures Congress 2008: Crossing Borders. Vancouver: ASCE, 2008.
[14]李扬,李自力,张艳. 中美欧储罐抗震规范中地震作用的比较研究 [J]. 世界地震工程, 2009(1): 122-130.
LI Yang, LI Zi-li, ZHANG Yan. Comparative study on seismic action between Chinese, American and European seismic design codes of liquid storage tanks [J]. World Earthquake Engineering, 2009(1): 122-130.
[15]MOSLEMI M, KIANOUSH M R. Parametric study on dynamic behavior of cylindrical ground-supported tanks [J]. Engineering Structures, 2012, 42: 214-230.
[16]徐志钧, 许朝铨, 沈珠江. 大型储罐基础设计与地基处理 [M]. 北京: 中国石化出版社, 1999: 710.
[17]翟长海, 谢礼立. 抗震结构最不利设计地震动研究 [J]. 土木工程学报, 2005, 38(12): 51-58.
ZHAI Chang-hai, XIE Li-li. The severest design ground motions for seismic design and analysis of structures [J]. China Civil Engineering Journal, 2005, 38(12): 51-58.
[18]WHITTAKER D, JURY D. Seismic design loads for storage tanks [C] ∥ 12th World Conference on Earthquake Engineering. New Zealand: [s. n.], 2000.

[1] KE Shi tang, ZHU Peng. Wind loads of frequency domain characteristics for large cooling towers with aerodynamic measures based on large eddy simulation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2143-2149.
[2] CUI Guo yong, CUI Chang yu, TU Gui gang. Mechanical property of free form surface concrete structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1960-1966.
[3] HUANG He, GUAN Fu-ling, TANG Yu-si, XU Yan. Material mechanical property tests and reflector profile analysis for inflatable antenna[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 769-775.
[4] YANG Hong-kang, GAO Bo-qing. Dynamic stability analysis of liquid storage tanks based on
Floquet theory
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(2): 378-384.
[5] GUAN Fu-ling, QIAN Li-feng. Structural analysis and test of an inflatable ground antenna[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(2): 257-262.
[6] YANG Hong, YANG Dai-heng, ZHAO Yang. Three-dimensional finite element simulation of
static granular material pressure for steel silos
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1423-1429.
[7] XU Yan, GUAN Fu-ling, KAWAGUCHI Kenichi. Drape and inflatable mechanics of membrane inflatable structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 75-80.
[8] BAO Kan-Yuan, CHEN Guo-Hui, SUN Bing-Nan. Numerical simulation of fluctuating wind load and windinduced
response of large hyperbolic cooling tower
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(5): 955-961.
[9] XIAO Xiao, GUAN Fu-Ling, XU Pan. Numerical analysis and experimental study on deployment process of coil-folded inflatable tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(1): 184-189.