Please wait a minute...
J4  2014, Vol. 48 Issue (2): 327-333    DOI: 10.3785/j.issn.1008-973X.2014.02.021
    
Numerical simulation of Taconis thermoacoustic oscillation
GUO Yi-nan1, LEI Gang2, WANG Tian-xiang2, WANG Kai1, SUN Da-ming1*
1. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China;
2. State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China
Download:   PDF(1253KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the issue that Taconis oscillation not only causes disturbing effect to the measurements of cryogenic fluids but also increases thermal load significantly, Taconis oscillation in a thin quarter-wavelength tube filled with helium with one end at 8 K and the other end at 300 K was studied with computational fluid dynamics(CFD) method. By numerical simulation, wall heat flux, acoustic power flow distribution, the whole onset process of Taconis thermoacoustic oscillation and some other important parameters are obtained successfully. Taconis oscillation mechanism was revealed by studying the heat transfer process between the gas and tube wall, the wall heat flux, and the acoustic power distribution in the Taconis tube. It is shown that the radial velocity which is ignored in the linear thermoacoustic theory can’t be ignored in Taconis oscillation simulation, the boundary luyer of Taconis tube can be divided into generating area and dissipating area based on the simulation results, and thermoacoustic conversion occurs in generating area while heat pumping and viscous loss dominate the dissipating area.



Published: 01 February 2014
CLC:  TK 123  
Cite this article:

GUO Yi-nan, LEI Gang, WANG Tian-xiang, WANG Kai, SUN Da-ming. Numerical simulation of Taconis thermoacoustic oscillation. J4, 2014, 48(2): 327-333.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.02.021     OR     http://www.zjujournals.com/eng/Y2014/V48/I2/327


Taconis热声振荡的数值模拟

针对Taconis振荡对低温液体测量造成严重干扰并且极大增强低温储液的漏热问题,基于计算流体动力学(CFD)模拟方法,对氦气为介质的单端开口细长管内发生的Taconis振荡进行研究,低温端和常温端的温度分别为8和300 K.通过数值模拟,获得包括热流密度、声流分布等在内的热声参数和完整的Taconis热声起振过程,通过对管壁和气体介质之间的热量传递过程和时均热流密度以及管内声功分布进行分析,定量揭示Taconis振荡的发生机理.模拟结果表明,在线性热声理论中可以忽略的径向速度在Taconis振荡中不能被忽略,根据模拟结果将Taconis管边界层划分为发声区和耗散区2个区域,其中发声区为热声转换区域,耗散区以泵热损失和黏性耗散为主.

[1] LUCK H, TREPP C. Thermoacoustic oscillations in cryogenics. Part 2: applications [J].Cryogenics, 1992, 32(8): 698702.
[2] QIU L M, LOU P, WANG K, et al. Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen [J]. Chinese Science Bulletin, 2012, 57: 1-4.

[3] WANG K, QIU L M,WANG B, et al. A standing-wave thermoacoustic engine driven by liquid nitrogen [C]∥ AIP Conference Proceedings. Spokane: American Institute of Physics, 2012, 1434(57):351-358.
[4] TACONIS K W, BEENAKKER J J M, NIER A O C, et al. Measurements concerning the vapour-liquid equilibrium of solutions of He3 in He4 below 2.19 °K [J]. Physical Amsterdam, 1949, 15: 733-739.
[5] ROTT N. Damped and thermally driven acoustic oscillations in wide and narrow tubes [J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1969, 20: 230-243.
[6] ROTT N. Thermally driven acoustic oscillations. Part II: Stability limit for helium [J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1973, 24: 54.
[7] ROTT N. Thermally driven acoustic oscillations. part Ш: second-order heat flux [J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1975, 26: 43-49.
[8] YAZAKI T, TOMINAGA A, NARAHARA Y. Experiments on thermally driven acoustic oscillations of gaseous helium [J]. Journal of Low Temperature Physics, 1987, 41: 45-60.
[9] SUGIMOTO N, SHIMIZU D. Boundary-layer theory for Taconis oscillations in a helium-filled tube [J]. Physics Of Fluids, 2008, 20(10), 10410210410211.
[10] SHIMIZU D, SUGIMOTO N. Physical Mechanisms of Thermoacoustic Taconis Oscillations [J]. Journal of the Physical Society of Japan, 2009, 78(9), 0944010944016
[11] SHIMIZU D, SUGIMOTO N. Numerical study of thermoacoustic Taconis oscillations [J]. Journal Of Applied Physics, 2010, 107(3), 03491003491011
[12] 余国瑶. 热声发动机自激振荡过程及热声转换特性研究 [D].北京:中国科学院理化技术研究所, 2008.
YU Guo-yao. Study of spontaneous oscillation and thermoacoustic conversion characteristics of thermoacoustic heat engines [D]. Beijing: Chinese Academy of Sciences :Technical Institute of Physics and Chemistry, 2008.

[1] ZHAO Rui-dong, WU Zhang-hua, LUO Er-cang, DAI Wei. Study on the basic experimental rig for thermoacoustic system[J]. J4, 2013, 47(2): 308-313.
[2] NIE Xiang-hong, YU Xiao-li, CHEN Ping-lu, FANG Yi-dong. Theoretical analysis of available energy and efficiency in liquid
nitrogen engine cycle
[J]. J4, 2010, 44(11): 2159-2163.
[3] HU Jun-Jiang, SHU Xiao-Chi, NIE Xiang-Gong, et al. Feasibility of parallel airpowered and diesel hybrid engine[J]. J4, 2009, 43(09): 1632-1637.