Please wait a minute...
J4  2012, Vol. 46 Issue (3): 424-430    DOI: 10.3785/j.issn.1008-973X.2012.03.007
    
Advanced nine-node co-rotational quadrilateral
elastoplastic shell element
WEI Hao-yan1, LI Zhong-xue1, ZHONG Zheng2
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China;
2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A nine-node co-rotational quadrilateral shell element for elasto-plastic shell structures undergoing arbitrarily large rotations was presented. Different from other existing co-rotational shell element formulations, additive vectorial rotational variables were employed in the proposed formulation, thus, updating nodal variables in a nonlinear incremental solution procedure becomes very simple, and symmetric element tangent stiffness matrices were achieved in both local and global coordinate systems, resulting in better computational efficiency. For analyses of elasto-plastic shell problems, the von Mises yield criterion was introduced, and an implicit integration of the flow rules using the backward-Euler return approach was employed, meanwhile, consistent tangent moduli were derived. An assumed strain method was used to overcome locking phenomena, and the computational efficiency and accuracy of the present element were verified through several elasto-plastic shell problems undergoing arbitrarily large rotations.



Published: 01 March 2012
CLC:  TU 311.4  
  O 343.1  
Cite this article:

WEI Hao-yan, LI Zhong-xue, ZHONG Zheng. Advanced nine-node co-rotational quadrilateral
elastoplastic shell element. J4, 2012, 46(3): 424-430.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.03.007     OR     http://www.zjujournals.com/eng/Y2012/V46/I3/424


新型九节点协同转动四边形弹塑性壳单元

为求解板壳结构的弹塑性大变形问题,发展了一种新型九节点协同转动四边形壳单元.与现有的其他协同转动壳单元相比,由于在单元中采用了增量可直接累加的矢量型转动变量,大大降低了非线性增量求解过程中更新转动变量的难度,且在整体与局部坐标系下能得到对称的单元切线刚度矩阵,单元的计算效率得到明显提高.在单元公式中,引入了von Mises材料屈服准则,采用向后欧拉迭代法进行材料本构关系的隐式积分,并选用一致材料模量矩阵.为减轻闭锁现象的不利影响,单元中还引入了假定应变法.通过2个典型算例,证明了这种新型九节点协同转动四边形壳单元在求解板壳结构弹塑性大变形问题时的计算精度和收敛性是令人满意的.

[1] BELYTSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structures [M]. New York: Wiley, 2000.
[2] BATTINI J M, PACOSTE C. On the choice of the linear element for corotational triangular shells [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/45/46/47): 6362-6377.
[3] FELIPPA C A, HAUGEN B. A unified formulation of smallstrain corotational finite elements: I. Theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21/22/23/24): 2285-2335.
[4] IZZUDDIN B A. An enhanced corotational approach for large displacement analysis of plates [J]. International Journal for Numerical Methods in Engineering, 2005, 64(10): 1350-1374.
[5] CRISFIELD M A, MOITA G F. A unified corotational framework for solids, shells and beams [J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2969-2992.
[6] LI Z X, VUQUOC L. An efficient corotational formulation for curved triangular shell element [J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1029-1062.
[7] LI Z X, IZZUDDIN B A, VUQUOC L. A 9node corotational quadrilateral shell element [J]. Computational Mechanics, 2008, 42(6): 873-884.
[8] LI Z X,LIU Y F, IZZUDDIN B A, VUQUOC L. A stabilized corotational curved quadrilateral composite shell element [J]. International Journal for Numerical Methods in Engineering, 2011, 86(8): 975-999.
[9] 李忠学. 结构仿生学与新型有限元计算理论[M]. 北京:科学出版社, 2009.
[10] BRANK B, IBRAHIMBEGOVIC A. On the relation between different parametrizations of finite rotations for shells [J]. Engineering Computations, 2001, 18(7): 950-973.
[11] MKINEN J. Rotation manifold SO(3) and its tangential vectors [J]. Computational Mechanics, 2008, 42(6): 907919.
[12] BECKER M, HACKENBERG HP. A constitutive model for rate dependent and rate independent inelasticity. Application to IN718 [J]. International Journal of Plasticity, 2011, 27(4): 596-619.
[13] SIMO J C, HUGHES T J R. Computational inelasticity[M]. Beijing: World Publishing Corporation, 2008.
[14] RAMM E, MATZENMILLER A. Consistent linearization in elastoplastic shell analysis [J]. Engineering Computations, 1988, 5(4): 289-299.
[15] 李忠学. 梁板壳有限单元中的各种闭锁现象及解决方法 [J]. 浙江大学学报:工学版, 2007, 41(7): 1119-1125.
LI Zhongxue. Strategies for overcoming locking phenomena in beam and shell finite element formulations [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(7): 1119-1125.
[16] HUANG H C, HINTON E. A new 9 node degenerated shell element with enhanced membrane and shear interpolation [J]. International Journal for Numerical Methods in Engineering, 1986, 22(1):73-92.

[17] ARCINIEGA R A, REDDY J N. Tensorbased finite element formulation for geometrically nonlinear analysis of shell structures [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(4/5/6): 1048-1073.
[18] FONTES VALENTE R A, PARENTE M P L, NATAL JORGE R M, et al. Enhanced transverse shear strain shell formulation applied to large elastoplastic deformation problems [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 62(10): 1360-1398.
[19] KIM D B, LOMBOY G R. A corotational quasiconform ing 4node resultant shell element for large deformation elastoplastic analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/45/46/47): 6502-6522.
[20] BRANK B, PERIC D, DAMJANIC F B. On large deformation of thin elastoplastic shells: implementation model for quadrilateral shell element \
[J\]. International Journal for Numerical Methods in Engineering, 1997, 40(4): 689-726.

[1] WANG Qi, WANG Ya-yong, LOU Wen-juan, BAI Xue-shuang. Model test and elastic-plastic analysis on seismic performance of
stadium canopy roof
[J]. J4, 2011, 45(1): 87-92.
[2] QIAO Hua, CHEN Wei-qiu. Multi-scale numerical simulation of structures
based on Arlequin method
[J]. J4, 2010, 44(12): 2314-2319.
[3] ZHANG Nian-Wen, TONG Gen-Shu. Rigid body test and recovery of nodal forces for beam element in updated Lagrangian formulation[J]. J4, 2010, 44(10): 1992-1997.
[4] LI Zhong-Hua, XU Jin, LIU Yong-Fang, et al. Advanced co-rotational curved triangular shell element using discrete strain gap method[J]. J4, 2009, 43(8): 1506-1512.