Please wait a minute...
J4  2011, Vol. 45 Issue (3): 557-562    DOI: 10.3785/j.issn.1008-973X.2011.01.026
    
Application of adaptive ensemble algorithm based on
correctness and diversity
LUO Jian-hong1,2, CHEN De-zhao1
1.Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
2.Department of Management Science and Engineering, Zhejiang SciTech University, Hangzhou 310018, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new ensemble algorithm was proposed. to select individual classifier reasonably from ensemble classifier in order to improve the effect of ensemble learning.  Designs a selective index giving consideration to correctness and diversity based on knowledge granular principle, in order to fast select some individuals from the trained classifiers to build 'classifiers space’. Then each specific ensemble classifier is generated for each class by adaptive strategy, and these ensemble classifiers are inclusive, so the group of ensemble classifiers would cost little computation resource. Then  make classification decision by adaptive strategy. Experiments conducted on some typical classification problems demonstrate that compared to the other ensemble methods, this algorithm is higher efficient, more stable and has stronger generalization performance.



Published: 16 March 2012
CLC:  TP 181  
Cite this article:

LUO Jian-hong, CHEN De-zhao. Application of adaptive ensemble algorithm based on
correctness and diversity. J4, 2011, 45(3): 557-562.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.01.026     OR     http://www.zjujournals.com/eng/Y2011/V45/I3/557


兼顾正确率和差异性的自适应集成算法及应用

针对如何从集成分类器中合理地筛选个体以提高集成学习的效果这一难题,提出了新的集成算法.该算法基于知识粒原理设计一种兼顾正确率和差异性的筛选指标,以便从训练的一批分类器中快速地选择个体组建成库;以自适应方式,针对每一类别生成特定的集成分类器,这些集成分类器间存在包容性,由此构建的集成分类器组将占用较少的计算资源,并将以自适应方式进行分类决策.对多种模式分类问题的试验结果表明:与其他集成方法相比,该集成算法更为高效,稳定性更好,具有较强的泛化性能.

[1] 任俊,李志能. 支持向量机在字符分类识别中的应用[J]. 浙江大学学报:工学版, 2005,39(8):1136-1141.
REN Jun, LI Zhineng. Application of support vector machines in classification and recognition of characters[J]. Journal of Zhejiang University: Engineering Science, 2005, 39(8):11361-141.
[2] BREIMAN L. Bagging predictors [J]. Machine Learning, 1996, 24 (2): 123-140.
[3] MARTINEZMUNOZ G, SUAREZ A. Pruning in ordered bagging ensembles [C] ∥ Proceedings of the 23th International Conference on Machine Learning. Pittsburgh, PA, 2006: 609-616.
[4] ZHOU Z H, WU J X, TANG W. Ensembling neural networks: many could be better than all [J]. Artificial Intelligence, 2002, 137 (1/2): 239-263.
[5] BAKKER B , HESKES T. Clustering ensembles of neural networks[J] . Neural Networks , 2003 , 16(2) :261-269.
[6] 傅强, 胡上序, 赵胜颖. 基于PSO算法的神经网络集成构造方法 [J]. 浙江大学学报:工学版, 2004, 38(12):63-67.
FU Qiang, HU Shangxu, ZHAO Shengying. PSO based approach for neural network ensembles[J]. Journal of Zhejiang University: Engineering Science, 2004, 38(12): 63-67.
[7] 苗夺谦,王国胤,刘清,等. 粒计算:过去、现在与展望 [M]. 北京:科学出版社, 2007:143.
[8] YAO Y Y. Granular Computing: basic issues and possible solutions [C] ∥ Proceedings of the Fifth Joint Conference on Information Sciences. USA: Elsevier Publishing Company, 2000: 186-189.
[9] LAKE C L, MERZ C J. UCI repository of machine learning database[DB/OL].[2009-10-17]. http:∥www.ics.uci.edu/~mlearn/mlrepository.html
[10] HOUCK C R, JOINES J A, KAY, M G. A genetic algorithm for function optimization: a Matlab implementation [R]. Raleigh: North Carolina State University, NC, 1995.
[11] HE Y J, CHEN D Z, ZHAO W X. Ensemble classifier system based on ant colony algorithm and its application in chemical pattern classification[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 80(1): 39-49.
[12] HOPKE P K, MASSART D L. Reference data sets for chemometrical methods testing[J]. Chemometrics and Intelligent Laboratory Systems, 1993, 19(1):35-41.

[1] LIN Yi-ning, WEI Wei, DAI Yuan-ming. Semi-supervised Hough Forest tracking method[J]. J4, 2013, 47(6): 977-983.
[2] LI Kan, HUANG Wen-xiong, HUANG Zhong-hua. Multi-sensor detected object classification method based on
support vector machine
[J]. J4, 2013, 47(1): 15-22.
[3] WANG Hong-bo, ZHAO Guang-zhou, QI Dong-lian, LU Da. Fast incremental learning method for one-class support vector machine[J]. J4, 2012, 46(7): 1327-1332.
[4] PAN Jun, KONG Fan-sheng, WANG Rui-qin. Locality sensitive discriminant transductive learning[J]. J4, 2012, 46(6): 987-994.
[5] AI Jie-qing, GAO Ji, PENG Yan-bin, ZHENG Zhi-jun. Negotiation decision model based on transductive
support vector machine
[J]. J4, 2012, 46(6): 967-973.
[6] JIN Zhuo-jun, QIAN Hui, ZHU Miao-liang. Trajectory evaluation method based on intention analysis[J]. J4, 2011, 45(10): 1732-1737.
[7] GU Hong, ZHAO Guang-zhou. Image retrieval and recognition based on generalized
local distance functions
[J]. J4, 2011, 45(4): 596-601.
[8] SHANG Xiu-Qin, LEI Jian-Gang, SUN You-Xian. Genetic programming based twoterm prediction model of iron ore burning through point[J]. J4, 2010, 44(7): 1266-1269.
[9] XU Lei, DIAO Guang-Zhou, GU Hong. Preprocess method of pairwise coupling based on multi-spheres[J]. J4, 2010, 44(2): 237-242.