Please wait a minute...
J4  2010, Vol. 44 Issue (2): 349-352    DOI: 10.3785/j.issn.1008-973X.2010.02.025
    
Influence factors of humus reduction by acclimated sediments of West Lake
XU Zhi-wei, CHEN Hong
(Institute of Environment Engineering, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

By using acclimated sediments of West Lake, the effects of temperature, pH, different nitrogen sources, and different metal ions on humus microbial reduction were preliminarily analyzed with anthraquinone-2,6-disulfonate (AQDS) as humus model compound. Experimental results show that acclimated sediments can reduce humus during 15~45 ℃ and the optimum temperature is 30~37 ℃. Humus reduction was occurred at initiative pH 4~9, and the optimum pH is 7. The degree of humus reductive activities caused by different nitrogen sources is NH4Cl> CO(NH2)2> NaNO3> NaNO2. Mg2+、Mn2+ enhanced humus microbial reduction, but Zn2+、Ni2+、Cu2+ showed partial inhibition for humus reduction, and Hg2+ completely inhibited humus reduction.



Published: 09 March 2010
CLC:  X 17  
Cite this article:

XU Zhi-Wei, CHEN Gong. Influence factors of humus reduction by acclimated sediments of West Lake. J4, 2010, 44(2): 349-352.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.02.025     OR     http://www.zjujournals.com/eng/Y2010/V44/I2/349


驯化的西湖底泥还原腐殖质影响因素研究

利用驯化的西湖底泥,以蒽醌-2,6-双磺酸盐(AQDS)作为腐殖质模式物,初步研究了温度、pH、不同类型氮源、不同种类金属离子等对底泥微生物还原腐殖质的影响.结果发现,在15~45 ℃下驯化底泥能还原腐殖质,最适反应温度为30~37 ℃;在反应初始pH为4~9的条件下可进行腐殖质还原,最适pH为7;不同类型氮源对微生物还原腐殖质的效果依次为NH4Cl>CO(NH2)2>NaNO3>NaNO2;Mg2+、Mn2+促进了微生物还原腐殖质,而Zn2+、Ni2+、Cu2+部分地抑制了腐殖质还原,Hg2+则完全抑制腐殖质还原.

[1]  STEVENSON F J. Humus chemistry: genesis, composition, reactions [M].2nd ed. New York: Wiley, 1994: 195.
[2] LOVLEY D R, COATES J D. Humic substances as electron acceptors for microbial respiration [J]. Nature, 1996, 382: 445448.
[3] 方连峰,王竞,周集体,等.醌化合物强化偶氮染料的生物脱色[J].中国环境科学.2007,27(2):174178.
FANG Lian-feng, WANG Jing, ZHOU Ji-ti, et al. Biological decolourzation quinone compound enhancing azo dyes [J]. China Environmental Science, 2007, 27(2): 174178.
[4] THOMAS B, WILLIAM P I, JACE A H, et al. Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium[J]. Environmental Science and Technology, 2005, 39(18): 71267133.
[5] BHUSHAN B, HALASZ A, HAWARI J. Effect of iron (Ⅲ), humus acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2.B[J]. Journal of Applied Microbiology, 2006, 100(3): 555563.
[6] FREDRICKSON J K, KOSTANDARITHES H M, LI S W, et al. Reduction of Fe(Ⅲ), Cr(Ⅵ), U(Ⅵ), and Tc(Ⅶ) by Deinococcus radiodurans R1[J]. Applied Environmental Microbiology, 2000, 66(5): 20062011.
[7] 许志诚,洪义国,罗微,等.中国希瓦氏菌D14T的厌氧腐殖质呼吸[J].微生物学报,2006,46(6): 973978.
XU Zhi-cheng, HONG Yi-guo, LUO Wei, et al. Anaerobic humus respiration by Shewanella cinica D14T [J].Acta Microbiologica Sinica, 2006, 46(6):  973978.
[8] SANTOS A B, BISSCHOPS I A E, CERVANTES F J, et al. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 ℃) and thermophilic (55 ℃) treatments for decolourisation of textile wastewaters[J]. Chemosphere, 2004, 55(9): 11491157.
[9] CERVANTES F J, VAN DER VELDE S, LETTINGA G, et al. Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds[J]. Biodegradation, 2000, 11(5): 313321.
[10] BRADLEY P M, CHAPELLE F H, LOVLEY D R. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene[J]. Applied Environmental Microbiology, 1998, 64(8):31023105.
[11] COATES J D, ELLIS D J, RODEN E, et al. Recovery of humics-reducing bacteria from a diversity of sedimentary environments[J]. Applied Environmental Microbiology, 1998, 64(4):15041509.
[12] CERVANTES F J, VAN DER VELDE S, LETTINGA G, et al. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia[J]. FEMS Microbiology Ecology, 2000, 34(2): 161171.
[13] CERVANTES F J, GUTIRREZ C H, LPEZ K Y, et al. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions[J]. Biodegradation, 2008, 19(2): 235246.
[14]LOVLEY D R, KASHEFI K, VARGAS M, et al. Reduction of humic substances and Fe (Ⅲ) by hyperthermophilic microorganisms[J]. Chemical Geology, 2000, 169(9): 289298.
[15] GILLER K E, WITTER E, MC GRATH S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review[J]. Soil Biology and Biochemistry, 1998, 30 (1011): 13891414.
[16] VICTOR M F, MARIA L R, PRESENTACION R, et al. Inhibition of Desuvovibrio gigas hydrogenase with copper salts and other metalions[J]. European Journal of Biochemistry, 1989, 185(2): 449454.
[17] 王家玲,李顺鹏,黄正.环境微生物学[M].北京:高等教育出版社,2004: 96.

No related articles found!