Please wait a minute...
J4  2009, Vol. 43 Issue (5): 953-956    DOI: 10.3785/j.issn.1008-973X.2009.05.032
    
High temperature oxidation of dichloromethane in air
WANG Bo, CHI Yong, YAN Jian-hua, NI Ming-jiang
(State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(467KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The oxidation characteristic of dichloromethane in air at high temperature was studied in an atmospheric tubular flow reactor. The experiment temperature varied from 700 ℃ to 1 000 ℃, while the residence time from 1.5 s to 2.5 s. The results showed that the residence time greatly influences the oxidation products of dichloromethane below 800 ℃, whereas the oxidation process is dominated by the temperature above 800 ℃. Dichloromethane is oxidized to CO and HCl firstly, followed by the slow oxidation of CO with the suppression effect of HCl. The favorable temperature for dichloromethane destruction is between 900 ℃ and 1 000 ℃. It is not sufficient that temperature is below 900 ℃ for complete conversion of CO to CO2, while when the temperature is above 1 000℃, the formation of Cl2 will be enhanced.



Published: 18 November 2009
CLC:  O657.75  
  X783  
Cite this article:

WANG Bei, CHE Chong, YAN Jian-Hua, et al. High temperature oxidation of dichloromethane in air. J4, 2009, 43(5): 953-956.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.05.032     OR     http://www.zjujournals.com/eng/Y2009/V43/I5/953


空气气氛中二氯甲烷的高温氧化特性

利用管式流动反应器研究了在常压空气中二氯甲烷的高温氧化特性,实验温度为700~1 000   ℃,停留时间为1.5~2.5 s.结果表明,当温度低于800 ℃时,停留时间显著影响二氯甲烷的氧化产物分布;当温度高于800 ℃时,二氯甲烷的氧化产物分布主要受温度影响.二氯甲烷首先被氧化为CO和HCl,然后CO在HCl的抑制作用下被缓慢氧化.分解二氯甲烷的适宜温度为900~1 000 ℃.当温度低于900 ℃时,仅通过延长停留时间不能把CO充分氧化为CO2;温度超过1 000 ℃会促进HCl的分解,增加Cl2的生成量.


[1] 程能林. 溶剂手册
[M]. 北京:化学工业出版社, 1994.
[2] 别如山,杨励丹,李季,等. 国内外有机废液的焚烧处理技术
[J]. 化工环保, 1999, 19(3): 148154.
BIE Ru-shan, YANG Li-dan, LI Ji, et al. Incineration technology for waste organic liquor at home and abroad
[J]. Environmental Protection of Chemical Industry, 1999, 19(3): 148154.

[3] SANTOLERI J J. Chlorinated hydrocarbon waste disposal and recovery systems
[J]. Chemical Engineering Progress, 1973, 69(1): 6874.

[4] 别如山,李鑫, 杨励丹,等. 含氯有机废水在流化床中焚烧HCl生成与控制的实验研究
[J]. 环境科学学报, 2001,21(4): 394399.
BIE Ru-shan, LI Xin, YANG Li-dan, et al. Experimental study on the formation and control of HCl from incineration of chlorinated waste water in fluidized bed
[J]. Acta Scientiae Circumstantiae, 2001, 21(4): 394399.

[5] 陈晓平,赵长遂,沈来宏,等. 流化床焚烧技术在有机废液无害化处理领域的应用
[J]. 锅炉技术, 2001, 32(9): 2528.
CHEN Xiao-ping, ZHAO Chang-sui, SHEN Lai-hong, et al. The application of fluidized bed incineration technology in the field of organic waste liquid disposal
[J]. Boiler Technology, 2001, 32(9): 2528.

[6] 林瑜,魏敦崧,陈德珍. 高温烟气脱除HCl时CO2的影响
[J]. 煤气与热力, 2006, 26(3): 1922.
LIN Yu, WEI Dun-song, CHEN De-zhen. Influence of CO2 on HCl removal from high temperature flue gas
[J]. Gas and Heat, 2006, 26(3): 1922.

[7] 别如山,吕响荣,李诗媛. 有机化学实验室废液焚烧NOx、SO2和HCl的排放特性
[J]. 燃烧科学与技术, 2005, 11(2): 105108.
BIE Ru-shan, LV Xiang-rong, LI Shi-yuan. NOx, SO2 and HCl emissions of organic waste liquid from chemistry laboratory incinerated in fluidized bed
[J]. Journal of Combustion Science and Technology, 2005, 11(2): 105108.

[8]  TAYLOR P H, DELLINGER B. Thermal degradation characteristics of chloromethane mixtures
[J]. Environmental Science and Technology, 1988, 22(4): 438447.

[9]  HO W P, BARAT R B, BOZZELLI J W. Thermal reactions of CH2Cl2 in H2/O2 mixtures: implications for chlorine inhibition of CO conversion to CO2
[J]. Combustion and Flame, 1992, 88(3/4): 265295.

[10] SGRO L A, KOSHLAND C P, LUCAS D, et al. Postflame reaction chemistry of dichloromethane: variations of equivalence ratio and temperature
[J]. Combustion and Flame, 2000, 120(4): 492503.

[11] BOSE D, SENKAN S M. On the combustion of chlorinated hydrocarbons. Ⅰ. Trichloroethylene
[J]. Combustion Science and Technology, 1983, 35(1-4): 187202.

No related articles found!