Please wait a minute...
J4  2009, Vol. 43 Issue (5): 807-811    DOI: 10.3785/j.issn.1008-973X.2009.05.004
    
Discrete time ultra-wideband channel model based on statistical properties of cluster and ray arrivals
 WANG Yong, TUN Zhong-Min
(Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(653KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the statistical properties of cluster and ray arrivals, the propagation processes of  cluster and ray in UWB signals were respectively described as a discrete  Poisson process. The discrete time interval of each process was determined dynamically according to different environments, and the amplitudes of the arrived clusters and  rays  were obtained with the cluster gain coefficient and the ray gain coefficient. A 2-D discrete impulse response expression for the model was concluded and a new method for  building the discrete time UWB channel model was proposed. The new model can be used to get the expression of power decay profile (PDP). The simulation showed that the method  can provide a good UWB channel discrete model in the stimation of channel characteristics. The PDP given in IEEE 802.15.3a and the PDP plotted from the new model had a fine  consistency.



Published: 18 November 2009
CLC:  TN92  
Cite this article:

WANG Yong, TUN Zhong-Min. Discrete time ultra-wideband channel model based on statistical properties of cluster and ray arrivals. J4, 2009, 43(5): 807-811.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.05.004     OR     http://www.zjujournals.com/eng/Y2009/V43/I5/807


基于簇和径统计特征的超宽带离散信道模型

基于超宽带(UWB)信号传播中簇信号和径信号的统计特征,将簇和径的传播过程描述为各自独立的离散泊松过程,并根据不同的信道环境及簇和径的信道增益系数确定离散时间间隔以及信号幅度, 由此得出一个二维的离散信道冲击响应表达式,给出一种超宽带离散信道模型的建立方法.利用该模型可以推导出超宽带信道的功率衰减轮廓(PDP)表达式.仿真结果表明,该离散信道模型可以更好地评估超宽带的信道特征,运用新的离散模型推导得到的PDP与IEEE 802.15.3a给出的PDP有着很好的一致性.

[1] WIN M Z, SCHOLTZ R A, BARNES M A. Ultra-wide bandwidth signal propagation for indoor wireless communications [C]∥ IEEE Conference on Communication (ICC). Montreal: IEEE, 1997: 5660.
[2] MUCCHI L, FALSI C, DARDARI D, et al. Channel parameters estimation for UWB realistic environments [C]∥ IEEE International Conference on Ultra-Wideband (ICU). Waltham: IEEE, 2006: 155160.
[3] MOLISCH A F, CASSIOLI D, CHONG C C, et al. A comprehensive standardized model for ultrawideband propagation channels [J]. IEEE Transactions on Antennas Propagation, 2006, 54(11): 31513166.
[4] CHONG C C, KIM Y E, LEE S S. A modified S-V clustering channel model for the UWB indoor residential environment [C]∥ IEEE Vehicular Technology Conference (VTC-Spring). Stockholm: IEEE, 2005: 5862.
[5] VENKATESH S, IBRAHIM J, BUEHRER R M. A new 2-cluster model for indoor UWB channel measurements [C]∥ IEEE Antennas and Propagation Society International Symposium. 
Monterey: IEEE, 2004: 946949.
[6] FOERSTER J. Channel modeling sub-committee report final [R]. IEEE P802.15-02/368r5-SG3a, 2002.

[1] LIU Yun-Feng, CHEN Chu-Min, WANG Xiang, BANG Xi, XU Yuan-Xin. Channel estimation methods for IEEE 802.11n based on
variable tap length
[J]. J4, 2010, 44(4): 681-686.
[2] XIAO Yun, DIAO Wen-Xi, SHU Kun, et al. Microwave photonic filters based on fiber ring structures[J]. J4, 2009, 43(6): 1168-1171.