Please wait a minute...
J4  2009, Vol. 43 Issue (6): 1141-1146    DOI: 10.3785/j.issn.1008973X.2009.03.030
    
Analysis of aerodynamic power characteristics of  cicada bionic wing
YAN Xing-yao1,2, ZHU Shan-an1,SU Zhong-di2,ZHANG Hong-jun2
(1.College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;
2.College of Metrology Technology and Engineering, China Jiliang University, Hangzhou  310018, China)
Download:   PDF(700KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at a simplified cicada wing designed for the micro-aero-vehicle(MAV), simulations of both instantaneous power characteristics and the relationships between the average rotational power and the amplitude of attack angles were put forward in three typical rotational models. The relationship between the ratio of maximal-average powers and the amplitude of attack angles was also investigated. The results showed that both the average rotational power in the advanced model and the ratio of maximal to average rotational power in the delayed model were sensitive to the amplitude of attack angles, and the relationship between the average stroke power and the amplitude of attack angles was affected very little by the rotational model,and the relationship between the ratio of maximal-average stroke power and the amplitude of attack angles was also almost not affected by the rotational model.



Published: 01 June 2009
CLC:  TB712  
Cite this article:

YA Nie-Yao, SHU Shan-An, SU Zhong-De, et al. Analysis of aerodynamic power characteristics of  cicada bionic wing. J4, 2009, 43(6): 1141-1146.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2009.03.030     OR     http://www.zjujournals.com/eng/Y2009/V43/I6/1141


某仿蝉翅膀气动功率特性的分析

针对某一特定形状仿蝉微飞行器的翅膀,进行了瞬时功率特性以及平均功率特性的分析.通过仿真,分析了翅膀在3种典型转动模式下的瞬时功率特性、平均功率与攻角幅值的关系,以及最大功率平均功率比值与攻角幅值之间的关系.结果表明,该型翅膀超前模式下的平均转动气动功率对攻角幅值的变化比较敏感;滞后模式下转动气动功率最大峰值平均值的比值对攻角幅值的变化也比较敏感;而平均拍动气动功率和攻角幅值之间的关系可近似地认为与模式无关;拍动气动功率最大峰值平均值的比值和攻角幅值之间的关系也可近似地认为与模式无关.

[1] DICKINSON M H, LEHMANN F O ,SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science,1999,284:1954-1960.
[2] SANE S P. The aerodynamics of insect flight[J]. J Exp Biol, 2003,206:4191-4208.
[3] ELLINGTON C P. The aerodynamics of hovering insect flight VI: lift and power requirements[J].Phil Trans R Soc Lond B, 1984,305:145-181.
[4] ELLINGTON C P, VANDEN B C, WILLMOTT A P, et al. Leading edge vortices in insect flight[J].Nature, 1996 ,384 :626-630.
[5] LEHMANN F O. The mechanisms of lift enhancement in insect flight[J]. Naturwissenschaften 2004,91:101-122.
[6] MINOTTI F. Unsteady two-dimensional theory of a flapping wing [J].Phys Rev E,2002, 66:051-907.
[7] SUN M, TAN J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. J Exp Biol, 2002,205:55-70.
[8] WU J H, SUN M. Unsteady aerodynamic forces of a flapping wing [J].J Exp Biol, 2004, 207:1137-1150.
[9] FRY S N. SAYAMAN R, DICKINSON M H. The aerodynamics of free-flight maneuvers in drosophila[J]. Science,2003,300:495-498.
[10] POELMA C, DICKINSON W B, DICKINSON M H. Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing[J]. Exp Fluids, 2006, 41: 213-225.
[11] DUDLEY R. Biomechanics of flight in neotropical butterflies–aerodynamics and mechanical power requirements[J]. J Exp Biol,1991,159: 335-357.
[12] DUDLEY R ,ELLINGTON C P. Mechanics of forward flight in bumblebees: Quasi-steady lift and power requirements[J]. J Exp Biol, 1991,148:53-88.
[13] ELLINGTON C P, MACHIN K E, CASEY T M. Oxygen consumption of bumblebees in forward flight[J]. Nature, 1990, 347:472-473.
[14] WAKELING J M, ELLINGTON C P. Dragonfly flight. III: Lift and power requirements[J]. J Exp Biol, 1997,200:583-600.
[15] CHAI P, DUDLEY R. Maximum right performance and limits to power output of vertebrate striated- muscle\[J\]. FASEB J, 1995, 9: A353.
[16] FRY S N, SAYAMAN R, DICKINSON M H. The aerodynamics of hovering flight in Drosophila[J]. J Exp Biol, 2005,208:2303-2318.
[17] ALTSHULER D L, DICKSON W B, VANCE J T, et al. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight[J]. PNAS, 2005, 102(50):18213-18218.
[18] SUN M, DU G. Lift and power requirements of hovering insects flight [J]. Acta Mech Sinica, 2003, 19(5):458-469.
[19] SUN M ,WU J H. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion[J].J Exp Biol, 2003, 206:3065-3083.
[20] SUN M, SHI L L A. Computational study of the aerodynamic force and power requirements of dragonfly (Aeshna Juncea) hovering[J]. J Exp Biol, 2004, 207:1887-1901.
[21] 颜幸尧,朱善安.仿蝉翅膀气动力及扭矩特性的分析 [J]. 浙江大学学报:工学版,2009,43(3):596-604.
YAN Xing-yao, ZHU Shan-an. Rotational effect and a simplified aerodynamic model of insect flight[J].Journal of Zhejiang University: Engineering Science, 2009,43(3):596-604.
[22] WANG Z J. Two dimensional mechanism for insect hovering[J]. Phys Rev Lett, 2000, 85(10):2216-2219.
[23] SANE S P. Induced airflow in flying insect I:a theoretical model of the induced flow [J].J Exp Biol,2006, 209:32-42.
[24] 林建忠,阮晓东,陈邦国,等 .流体力学 [M].北京:清华大学出版社,2005
[25] SANE S P, DICKINSON M H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J]. J Exp Biol, 2002, 205:1087-1096.
[26] 孙茂.昆虫飞行的高升力机理[J].力学进展,2002,32(3):425-434.
SUN Mao. Unsteady lift mechanisms in insects flight[J]. Advances in Machanics,2002,32(3):425-434.

No related articles found!