Please wait a minute...
J4  2009, Vol. 43 Issue (09): 1604-1608    DOI: 10.3785/j.issn.1008973X.2009.
    
Design and implementation of fibre channel protocol engine based on FPGA
 DIAO Bei, TU Feng, HU Xuan, SHU Yu, WANG Le-yu
(Department of Instrumentation Science and Engineering, Zhejiang University, Hangzhou 310027, China)
Download:   PDF(1055KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A fibre channel (FC) protocol processing engine based on field programmable gate array (FPGA) was proposed by analyzing the protocol in order to accelerate the applications of FC technology in the avionics. A novel hardware and software partition using sequence as the transaction interface layer was designed to support flexible system architecture for multiple platforms. The 2125 Gb/s FC protocol engine was successfully implemented on FPGA using a speedadaptive and reusable hardware core. Test results confirmed that the FC engine had high performance. The latency of transferring 2112 bytes data was less than 16 μs, and the unidirectional payload bandwidth was greater than 1600 Gb/s. The FC engine is suitable for mission critical avionic applications.



CLC:  TP 393.04  
  V 243  
Cite this article:

DIAO Bei, TU Feng, HU Xuan, et al. Design and implementation of fibre channel protocol engine based on FPGA. J4, 2009, 43(09): 1604-1608.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2009.     OR     http://www.zjujournals.com/eng/Y2009/V43/I09/1604


基于FPGA的光纤通道协议引擎的设计与实现

为加速光纤通道(FC)技术在航空电子系统中的应用,在深入分析光纤通道协议的基础上,基于现场可编程门阵列(FPGA)平台,提出一种高性能光纤通道协议引擎的设计与实现方法.对FC2层协议的实现进行以序列为中间交互层的软硬件划分,给出了支持多平台应用的系统构架,设计了兼容各种速率且具有可重用性的硬件核心模块,并在具体FPGA平台上实现了2125 Gb/s的光纤通道协议.测试结果证实,该协议引擎不仅功能正确,而且具有高性能,2 112 bytes的数据块传输的时间延迟在16 μs以下,单向有效数据带宽在1600 Gb/s以上,适合航空电子系统关键任务的应用.

[1] BENNER A F. 存储区域网络光纤通路技术[M]. 北京:人民邮电出版社, 2003.
[2] ANSI std, Fibre channel  framing and signaling  3 (FCFS3), rev 020, INCITS working draft proposed American National Standard for Information Technology[S]. [S. l.]: T11 Technical Committee, 2007.
[3] T11 Technical Committee. Fibre channel  avionics environment (FCAE), rev 26, INCITS working draft proposed technical report[R]. [S. l.]: T11 Technical Committee, 2002.
[4] 梁德文. 战斗机航空电子系统最新的发展趋势:网络化[J]. 电讯技术,2008, 48(6): 9397.
LIANG Dewen. Review on the new development of fighter avionics system:networking[J]. Telecommunication Engineering, 2008, 48(6): 9397.
[5] LEE K W, GEORGIOU C J, LI Chungsheng. Ultra highspeed networking solution:fibre channel architecture and its implementation[C]∥ Distributed Computing Systems, 1995, Proceedings of the 5th IEEE Computer Society Workshop on Future Trends of.[S. l.]: [s. n.], 1995:425431.
[6] 王芳,柴红刚,童薇. 基于FPGA的光纤通道适配器研究[J]. 华中科技大学学报:自然科学版,2008, 36(1): 6770.
WANG Fang, CHAI Honggang, TONG Wei. Fiber channel adapter using FPGA[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2008, 36(1): 6770.
[7] ANSI std, Fibre channel  link services (FCLS), rev 162, INCITS working draft proposed American National Standard for Information Technology[S]. [S. l.]: T11 Technical Committee, 2006.
[8] Xilinx Inc. Processor local bus (PLB) v34 (v102a) product specification, DS400 [R]. [S. l.]: Xilinx Inc, 2007.
[9] SCHMIDT A G, SASS R. Quantifying effective memory bandwidth of platform FPGAs[C]∥ 2007 International Symposium on FieldProgrammable Custom Computing Machines. [S. l.]: [s. n.], 2007:337338.
[10] Data Device Corporation. 751xxds, rev c [R]. [S. l.]: Data Device Corporation, 2006.

[1] SHU Yu, TU Feng, HONG Le-Yu. Hard real-time communication in fibre channel based on
bandwidth reservation
[J]. J4, 2010, 44(9): 1698-1704.
[2] LIN Sha-Pu, CHEN Guo-Jiang. Intelligent hybrid forecasting technique for short-term traffic flow[J]. J4, 2010, 44(8): 1473-1478.