Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy and Enviromental Engineering     
Influence of coke size on combustion zone distribution in sintering bed
LIU Zi hao, ZHOU Hao, ZHOU Ming xi, CHENG Ming, LIU Rui peng, CEN Ke fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1411KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mix of quartz sand and coke was used to simulate iron ore sintering in order to investigate the influence of coke size on combustion process in iron ore sintering. When coke size increased, green bed permeability improved and flame front speed increased during the combustion process. Coke size had important influence on the width of combustion zone. If the total coke mass fraction kept constant, the width of combustion zone increased at first when the mass fraction of plus 0.71 minus 1.0 mm coke increased on the basis of plus 1.0 minus 1.4 mm coke. When the mass ratio of plus 0.71 minus 1.0 mm coke increased to 30%, bed temperature distribution appeared the phenomenon of double peak and the width of combustion zone decreased. The increase of coke mass fraction can increase bed temperature and the duration time of combustion zone, retard or remove the double peak phenomenon of combustion zone temperature distribution. The main reasons of the double peak phenomenon of combustion zone temperature distribution are the uneven coke size distribution or low oxygen content in the combustion zone, which results in the failure of coke burn out in primary combustion zone. Oxygen volume fraction increased with combustion zone descending down. Unburned coke accelerated combustion, the rate of heat release increased, and bed temperature rises.



Published: 01 April 2016
CLC:  TK 222  
Cite this article:

LIU Zi hao, ZHOU Hao, ZHOU Ming xi, CHENG Ming, LIU Rui peng, CEN Ke fa. Influence of coke size on combustion zone distribution in sintering bed. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 691-697.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.04.013     OR     http://www.zjujournals.com/eng/Y2016/V50/I4/691


焦粉粒径对烧结床中燃烧带分布的影响

在烧结杯台架上采用石英砂和焦粉混合模拟铁矿石烧结过程,研究焦粉粒径对烧结燃烧过程的影响.随着焦粉粒径的增加,烧结生料床的透气性改善,燃烧过程中的火焰前锋速度增加.焦粉粒径对燃烧带宽度有重要影响,保持总的焦粉质量分数不变,在1.0~1.4 mm焦粉基础上,增加0.71~1.0 mm焦粉质量分数,燃烧带宽度先增加,当增加至30%时,床层温度分布出现双峰现象,燃烧带宽度减少.提高焦粉质量分数,有利于提高燃烧带温度和增加燃烧带持续时间,减缓甚至消除燃烧带温度分布出现双峰现象.燃烧带中的温度分布出现双峰主要是由于焦粉粒径分布不均或是燃烧带中由于氧量较低造成了焦粉在主燃区内未能燃尽,随着燃烧带的下移,氧气体积分数增加,未燃尽焦粉燃烧加速,燃烧热释放速率增加,床层温度上升.

[1] Word Steel Association. Crude steel production [EB/OL]. 2015 01 08. http:∥www.worldsteel.org/statistics/crude steel production.html.
[2] 中国钢铁工业协会.2014中国钢铁工业年鉴\[Z].北京:冶金工业出版社,2014: 280.
China Iron and Steel Association. China steel yearbook in 2014\[Z]. Beijing: Metallurgical Industry Press, 2014:280.
[3] LOO C E, LEANEY J C M. Characterizing the contribution of the high temperature zone to iron ore sinter bed permeability [J]. Mineral Processing and Extractive Metallurgy, 2002, 111(1): 11-17.
[4] LOO C E, HUTCHENS M F. Quantifying the resistance to airflow during iron ore sintering [J]. ISIJInternational, 2003, 43(5): 630-636.
[5] 欧大明,孙骐,沈红标,等.焦粉粒度对铁矿石烧结过程的影响[J]. 钢铁,2008, 43(10): 8-12.
OU Da ming, SUN Qi, SHEN Hong biao, et al. Effect of coke size on iron ore sintering [J]. Iron and Steel, 2008, 43(10): 8-12.
[6] UMADEVI T, DEODHAR V, KUMAR S, et al.Influence of coke breeze particle size on quality of sinter [J]. Ironmaking and Steelmaking, 2008, 35(8):567-574.
[7] LOO C E. Role of coke size in sintering of a hematite ore blend [J]. Ironmaking and Steelmaking, 1991, 18(1): 33-40.
[8] TEO C S, MIKKA R A, LOO C E. Positioning coke particles in iron ore sintering [J]. ISIJ International, 1992, 32(10): 1047-1057.
[9] 傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社,1996: 27-53.
[10] 周取定.铁矿石烧结过程中基本理论的研究[J].烧结与球团,1980,8(4): 1-8.
ZHOU Qu ding. Research of fundamental theory during iron ore sintering[J]. Sintering and Pelletizing, 1980, 8(4): 1-8.
[11] YONG W, CHOI S, CHOI E S, et al. Combustion characteristics in an iron ore sintering bed evaluation of fuel substitution [J]. Combustion and Flame, 2006,145(3): 447-463.
[12] 赵加佩.铁矿石烧结过程的数值模拟与试验验证[D].杭州:浙江大学,2012.
ZHAO Jia pei. Numerical modeling of the iron ore sintering process and its experimental validation [D]. Hangzhou: Zhejiang University, 2012.
[13] LOO C E. Changes in heat transfer when sintering porous goethitic iron ores [J]. Mineral Processing andExtractive Metallurgy IMM Transactions Section C, 2000, 109(1): 11-12.
[14] 程乐鸣,岑可法,周昊,等.多孔介质燃烧理论与技术[M].北京:化学工业出版社,2012: 15-16.
[15] 陈学俊,陈听宽.锅炉原理[M].北京:机械工业出版社,1990: 78-83.
[16] BALL D F, DARTNELL J, DAVISON J, et al.Agglomeration of iron ores [M]. London: Heinemann, 1973: 95-118.
[17] VOICE E W, WILD R. The influence of fundamental factors on the sintering process [C]∥Sintering Symposium 1958. Port Pirie:[s.n.], 1960: 21-59.
[18] 方立军,于澜.富氧环境下煤粒燃烧特性的热重试验[J].燃烧科学与技术,2014, 20(4):297-302.
FANG Li jun, YU Lan. Thermo gravimetric experiment on combustion performance of coal particle in oxygen enriched environments [J]. Journal of Combustion Science and Technology, 2014, 20(4): 297-302.
[19] 龙红明.铁矿石烧结过程热状态模型的研究与应用[D]. 长沙:中南大学, 2007.
LONG Hong ming. Research and application on sintering thermal state model of iron ore [D]. Changsha: Central South University, 2007.

[1] DONG Kang, ZHOU Hao, YANG Yu, WANG Ling-li, CEN Ke-fa. Influence of mass flow rate of secondary air on gas/solid flow characteristics of a swirl burner[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2162-2171.
[2] SHEN Yue-liang,ZHOU Hao, HU Min2, YANG Yu,WU Jian-bo, CEN Ke-fa. Application of electrostatic grid system in measuring flow characteristics of a swirl burner[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1658-1665.
[3] ZHOU Hao, WU Jian-bo, YANG Yv, LI Ya-peng, HU Shan-tao, CEN Ke-fa. Experimental measurement of gas-solid two-phase flow of
a swirl burner by optical wave method
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(12): 2189-2193.