Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy and Enviromental Engineering     
Simulation of chilled ammonia process based carbon capture power plant and optimization of coupling method
HAN Zhong he1, BAI Ya kai1,Wang Ji xuan2
1.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, North China Electric Power University, Baoding 071003,China| 2.College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, China
Download:   PDF(1366KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The simulation model of chilled ammonia process (CAP) and power plant were established and verified by using Aspen Plus. Simulation results show that the energy consumption of the reboiler in CO2 capture process is 1.26 GJ/(tCO2) and the energy consumption of the reboiler in ammonia capture process is 1.42 GJ/(tCO2). Three returning methods for draining from CO2 capture system and three returning methods for drain from ammonia capture system to the power plant were proposed and optimized. Results show that the drain from the CO2 capture process returning to the inlet of the fifth heater and the draining from the ammonia capture process returning to the inlet of the seventh heater are the condition of optimum coupling methods. Under the condition of optimum coupling method, the net output of the power plant decreases by 127.17 MW and the overall thermal efficiency decreases by 7.44%, the overall standard coal consumption of the power plant increases by 58.28 g/kWh and the overall heat consumption increases by 1 705.80 kJ/kWh, similar to the conventional mono ethanol amine (MEA) based carbon capture. Under the optimum coupling method, when carbon capture rate of the power plant increases by 5%, the net output of the power plant decreases by 7.48 MW, the overall efficiency decreases by 0.44%, the overall standard coal consumption increases by 4.09 g/kWh and the overall heat consumption increases by 119.58 kJ/kWh.



Published: 18 September 2016
CLC:  TK 11  
Cite this article:

HAN Zhong he, BAI Ya kai,Wang Ji xuan. Simulation of chilled ammonia process based carbon capture power plant and optimization of coupling method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 499-507.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.03.014     OR     http://www.zjujournals.com/eng/Y2016/V50/I3/499


冷冻氨脱碳机组流程仿真及其耦合方式优化

基于Aspen Plus建立火电厂及冷冻氨脱碳工艺(CAP)的仿真模型,并验证模型的正确性.冷冻氨脱碳工艺的仿真结果显示,二氧化碳捕集系统再生塔的热耗为1.26 GJ/(tCO2),氨气捕集系统再生塔的热耗为1.42 GJ/(tCO2).根据冷冻氨脱碳工艺的能耗特点提出3种二氧化碳捕集系统可能的疏水返回方案和3种氨气捕集系统疏水返回方案.结果显示,冷冻氨脱碳工艺与燃煤机组的最佳耦合方案以五号加热器入口作为碳捕集系统疏水的返回位置,以七号加热器入口作为氨气捕集系统疏水返回的位置.相对于原机组,最佳耦合方案下的脱碳机组的净输出功降低了127.17 MW、全厂热效率降低了7.44%、全厂标准煤耗增加了58.28 g/kWh,全厂热耗增加了1 705.80 kJ/kWh,与传统单乙醇胺(MEA)脱碳工艺类似.最佳耦合方案下,碳捕集率每提升5%,耦合系统的净输出功降低7.48 MW、全厂热效率降低0.44%、全厂标准煤耗增加4.09 g/kWh、全厂热耗增加119.58 kJ/kWh.

[1] FRANZ J, MAAS P, SCHERER V. Economic evaluation of pre combustion CO2 capture in IGCC power plants by porous ceramic membranes [J]. Applied Energy. 2014, 2.
[2] JIN B, ZHAO H, ZHENG C. Dynamic simulation for mode switching strategy in a conceptual 600MWe oxy combustion pulverized coal fired boiler [J]. Fuel, 2014, 137(6): 135144.
[3] ZHANG X, FU K, LIANG Z, et al. Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing [J]. Fuel, 2014, 136(10): 261267.
[4] AHN H, LUBERTI M, LIU Z, et al. Process simulation of aqueous MEA plants for post combustion capture from coal fired power plants [J]. Energy Procedia, 2013, 37:15231531.
[5] 张学镭, 陈海平. 供能方式对钙基吸收剂循环煅烧/碳酸化法捕集CO2热力性能的影响[J]. 中国电机工程学报, 2013, 29(29):4956.
ZHANG Xue lei, CHEN Hai ping. Influence of energy supply mode on thermodynamic performance of CO2 capture systems with Ca based sorbent cyclic calcination/carbonation reaction [J]. Proceedings of the CSEE, 2013, 29(29):4956.
[6] 韩中合, 王继选, 王营营,等. 太阳能辅助燃煤机组碳捕集系统性能研究及技术经济分析[J]. 中国电机工程学报, 2014, 34(5): 724732.
HAN Zhong he, WANG Ji xuan, WANG Ying ying, etal. Performance study on thermodynamic systems and techno economic analysis of carbon capture for solar thermal aided coal fired power plants [J]. Proceedings of the CSEE, 2014, 34(5): 724732.
[7] LINNENBERG S, DARDE V, OEXMANN J, et al. Evaluating the impact of an ammonia based post combustion CO2 capture process on a steam power plant with different cooling water temperatures [J]. International Journal of Greenhouse Gas Control, 2012, 10(9):114.
[8] 马双忱, 陈公达, 马宵颖,等. 氨法碳捕集过程中氨逃逸控制[J]. 化工学报, 2014, 65(10): 40864093.
MA Shuang chen, CHEN Gong da, MA Xiao ying, et al. Ammonia escape control in carbon dioxide capture using ammonia method [J]. CIESC Journal, 2014, 65(10): 40864093.
[9] 马双忱, 孙云雪, 崔基伟,等. 聚乙二醇二甲醚抑制脱碳吸收剂中氨逃逸的实验及原理分析[J]. 化工学报, 2011, 5(5):14081413.
MA Shuang chen, SUN Yun xue, CUN Ji wei, et al. Experiment and analysis of ammonia escape from decarburization absorbent inhibited by NHD [J]. CIESC Journal, 2011, 5(5):14081413.
[10] 宋卉卉. 氨法碳捕集过程中氨气的逃逸与控制研究[D]. 北京:华北电力大学,2014.
SONG Hui hui. Research on ammonia escape and control in carbon capture process using ammonia method [D]. Beijing∶North China Electric Power University, 2014.
[11] 杨阳. 燃煤电站尾部烟气氨法脱碳系统能耗特性及与电厂整合研究[D]. 北京:华北电力大学, 2012.
YANG Yang. Energy consumption analysis of ammonia based CO2 removing system from flue gas of coal fired power plant and its integration with power plant system [D]. Beijing:North China Electric Power University, 2012.
[12] QIN F, WANG S, KIM I, et al. Heat of absorption of CO2 in aqueous ammonia and ammonium carbonate/carbamate solutions [J]. International Journal of Greenhouse Gas Control, 2011, 5(3):405412.
[13] DARDE V, MARIBO MOGENSEN B, WELL W J M V, et al. Process simulation of CO2 capture with aqueous ammonia using the extended UNIQUAC model [J]. International Journal of Greenhouse Gas Control, 2012, 10(5):7487.
[14] JILVERO H, NORMANN F, ANDERSSON K, et al. Thermal integration and modelling of the chilled ammonia process [J]. Energy Procedia, 2011, 4(22):17131720.
[15] JILVERO H, NORMANN F, ANDERSSON K, et al. Heat requirement for regeneration of aqueous ammonia in post combustion carbon dioxide capture [J]. International Journal of Greenhouse Gas Control, 2012, 11(6):181187.
[16] 张民楷. 氨法捕集二氧化碳工艺的流程模拟[D]. 北京:清华大学, 2012.
ZHANG Min kai. Simulation of ammonia based carbon capture process[D]. Beijing:Tsinghua University. 2012.
[17] ZHANG M, GUO Y. Process simulations of large scale CO2 capture in coal fired power plants using aqueous ammonia solution [J]. International Journal of Greenhouse Gas Control, 2013, 16(10): 6171.
[18] ZHANG M, GUO Y. Process simulations of NH3 abatement system for large scale CO2 capture using aqueous ammonia solution [J]. International Journal of Greenhouse Gas Control, 2013, 18(5): 114127.
[19] ZHANG M, GUO Y. Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution [J]. Applied Energy, 2013, 111(4):142152.
[20] VERSTEEG P, RUBIN E S. A technical and economic assessment of ammonia based post combustion CO2 capture at coal fired power plants [J]. International Journal of Greenhouse Gas Control, 2011, 5(6):15961605.
[21] LIU J, YAN S, ZENG D. A new measurement model for main steam flow of power plants [J]. Procedia Environmental Sciences, 2011, 11:1824.
[22] GAL E. Ultra cleaning of combustion gas including the removal of CO2: WO, WO2006022885 A1 [P]. 2005.
[23] Aspen Technology. Rate based model of the CO2 capture process by NH3 using Aspen Plus [R]. Cambridge MA, USA, 2009.
[24] HANAK D P, BILIYOK C, MANOVIC V. Rate based model development, validation and analysis of chilled ammonia process as an alternative CO2 capture technology for coal fired power plants [J]. International Journal of Greenhouse Gas Control, 2015, 34:5262.
[25] YU J, WANG S, YU H, et al. Rate based modelling of CO2 regeneration in ammonia based CO2 capture process [J]. International Journal of Greenhouse Gas Control, 2014, 28(2):203215.
[26] VALENTI G, BONALUMI D, MACCHI E. Modeling of ultra super critical power plants integrated with the chilled ammonia process [J]. Energy Procedia, 2011, 4(4):17211728.
[27] KOTHANDARAMAN A. Carbon dioxide capture by chemical absorption: a solvent comparison study [D]. Boston:Massachusetts Institute of Technology, 2010.

[1] TIAN Fu you,HUANG Lian feng,FAN Li wu,YU Zi tao,HU Ya cai. Experimental study on pressure drop of packed beds with binary sintered ore particle mixtures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2077-2086.
[2] XU Huan xiang, YU Xiao li, WANG Lei, FAN Zhi peng, DOU Wen bo, WEI Wei, LI Dao fei. Compressed-air hybrid engine for exhaust energy recovery based on medium mixing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1353-1359.
[3] XIA Yu,QIU Xing qi,HUI Yuan yuan. Heat transfer in opening system with participating mediums[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1367-1372.
[4] XU Huan-xiang, LI Dao-fei, WANG Lei, YE Jin, FAN Zhi-peng, YU Xiao-li. Efficiency analysis of pneumatic and internal combustion combined cycle for exhaust heat recycle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 649-652.
[5] KONG Xiang-qiang, LIN Lin, LI Ying, YANG Qian-ming. Performance  of  direct expansion solar assisted heat pump water heater using R410A[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1666-1671.
[6] SUN Da-ming, WANG Kai, LOU Ping, ZHAO Yi-tao,ZHANG Xue-jun, QIU Li-min. Working characteristics of Stirling-type thermoacoustic engine connected with linear alternator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1457-1462.
[7] XU Huan-xiang, LI Dao-fei, WANG Lei, YE Jin, FAN Zhi-peng, YU Xiao-li. Theory study of exhaust heat recovery by pneumatic and internal combustion combined cycle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(6): 1051-1056.
[8] QU Rui-yang,WU Xue-cheng,GAO Xiang,WU Ying-chun,CHEN Ling-hong,Gréhan G. Numerical simulation of particle reconstruction 
in digital holographic microscopy
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1647-1653.