Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering     
characteristics of dual pressure switch for aircraft piston pump
OUYANG Xiao ping, LI Lei, FANG Xu, YANG Hua yong
State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1036KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic mathematic model of the pressure controlled mechanism was established and the numerical simulation investigation was conducted to analyze the causes of pressure overshoot in order to reduce the pressure overshoot amplitude. Analysis show that the pump discharge equivalent chamber and the swash plate are the main causes of the pressure overshoot during the dual pressure switch process. Methods for minimizing the pressure overshoot amplitude were proposed, such as lowering the discharge equivalent chamber volume of the pump and configuring an adjustable damp hole. The simulation results indicate that the pressure overshoot amplitudes decrease by 48.6% with dual pressure piston pump (DPP) switching from high operating pressure to low operating pressure and decrease by 20.4% vice versa at one third of the DPP discharge equivalent chamber volume. While the damp hole can effectively suppress the pressure overshoot amplitude with DPP switching from high operating pressure to low operating pressure, and can increase the pressure overshoot amplitude vice versa. Therefore, these methods should be applied in a comprehensive way.



Published: 18 September 2016
CLC:  TH 137.7  
Cite this article:

OUYANG Xiao ping, LI Lei, FANG Xu, YANG Hua yong. characteristics of dual pressure switch for aircraft piston pump. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 397-404.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.03.001     OR     http://www.zjujournals.com/eng/Y2016/V50/I3/397


双压力航空柱塞泵压力切换动态特性

为分析双压力航空柱塞泵压力超调产生的原因从而降低压力超调幅值,建立该泵压力调节机构的动态数学模型,并开展数值仿真研究.分析指出,泵出口等效容腔及斜盘这2
个滞后环节是导致泵压力切换时出现压力超调的主要原因.提出降低泵出口等效容腔及在控制柱塞腔前设置阻尼孔等方法来降低压力超调幅值.数值仿真结果表明,当泵出口等效容腔降低为原来的1/3时,泵从高压向低压切换和从低压向高压切换时的压力超调幅值分别下降48.6%和20.4%,设置阻尼孔能有效降低泵从低压向高压切换时的压力超调,但加大了从高压向低压切换时的压力超调幅值,因此应综合运用这些方法来降低压力超调幅值.

[1] 王占林. 飞机高压液压能源系统[M]. 北京:北京航空航天大学出版社, 2004.
[2] 卢宁,付永领,孙新学. 基于AMEsim的双压力柱塞泵的数学建模与热分析[J]. 北京航空航天大学学报,2006, 32(9):1055-1059.
LU Ning, FU Yong ling, SUN Xin xue. Digital modeling of double press axial piston pump and its thermal analysis basing on AMEsim [J]. Journal of Beijing university of Aeronautics and Astronautics, 2006, 32(9):1055-1059.
[3] 陈焕明,刘卫国,习仁国, 等. 双压力柱塞泵建模与仿真研究[J]. 机床与液压,2012,40(8):71-74.
CHEN Huan ming, LIU Wei guo, XI Ren guo, et al. Research on the modeling and simulation of the double pressure axial piston pump [J]. Machine Tool and Hydraulics, 2012,40(8):71-74.
[4] FIEBING C, LU X J, SMOLKA S. Pressure compensator (PC) pressure overshoot analysis and experimental research of an open circuit pump [C] ∥Fluid Power and Mechatronics (FPM), Harbin:IEEE, 2015: 910-913.
[5] MANDAL N P, SAHA R, MOOKHERJEE S, et al. Pressure compensator design for a swash plate axial piston pump [J]. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(2): 021001.
[6] SCHOENAU G J, BURTON R T, KAVANAGH G P. Dynamic analysis of a variable displacement pump [J]. Journal of Dynamic Systems, Measurement, and Control, 1990, 112(1): 122-132.
[7] ALY A A. Flow rate control of variable displacement piston pump with pressure compensation using neural network [J]. Journal of Engineering Science, 2007, 33(1): 199-209.
[8] MANRING N D. Designing a control and containment device for cradle mounted, axial actuated swash plates [J]. Journal of Mechanical Design, 2002, 124(3): 456-464.
[9] MANRING N D. Designing a control and containment device for cradle mounted, transverse actuated swash plates [J]. Journal of Mechanical Design, 2001, 123(3): 447-455.
[10] BAHR M K, SVOBODA J, BHAT R B. Vibration analysis of constant power regulated swash plate axial piston pumps[J]. Journal of Sound and Vibration, 2003, 259(5): 1225-1236.
[11] ACHTEN P. Dynamic high frequency behavior of the swash plate in a variable displacement axial piston pump [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2013, 227(6): 529-540.
[12] KIM J H, JEON C S, HONG Y S. Constant pressure control of a swash plate type axial piston pump by varying both volumetric displacement and shaft speed [J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(11): 2395-2401.
[13] MANDAL N P, SAHA R, SANYAL D. Effects of flow inertia modelling and valve plate geometry on swash plate axial piston pump performance [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011: 0959651811426508.
[14] 陈龙, 常真卫, 翟江, 等. 航空柱塞泵系统建模与仿真研究[J]. 液压气动与密封, 2015 (7): 69-72.
CHEN Long, CHANG Zhen wei, ZHAI Jiang, et al. Research on system modeling and simulation of aircraft piston pump [J]. Hydraulic Pneumatics and Seals, 2015 (7): 69-72.
[15] 童水光, 王相兵, 钟崴, 等. 基于虚拟样机技术的轴向柱塞泵动态特性分析[J]. 机械工程学报, 2013, 49(2): 174-182.
TONG S G, WANG X B, ZHONG W, et al. Dynamic characteristics analysis on axial piston pump based on virtual prototype technology [J]. Journal of Mechanical Engineering, 2013, 49(2): 174-182.
[16] ROCCATELLO A, MANC S, NERVEGNA N. Modelling a variable displacement axial piston pump in a multibody simulation environment [J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(4): 456-468.
[17] KALIAFETIS P, COSTOPOULOS T. Modelling and simulation of an axial piston variable displacement pump with pressure control [J]. Mechanism and Machine Theory, 1995, 30(4): 599612.
[18] 魏湉. 航空柱塞泵压力脉动特性研究[D]. 杭州:浙江大学, 2013.
WEI Tian. Research on the pressure pulsation of the aviation piston pump [D]. Hangzhou:Zhejiang University,2013.
[19] MANRING N D, JOHNSON R E. Modeling and designing a variable displacement open loop pump [J]. Journal of Dynamic Systems, Measurement, and Control, 1996, 118(2): 267-271.
[20] MANRING N D, MEHTA V S. Physical limitations for the bandwidth frequency of a pressure controlled, axial piston pump [J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(6): 061005.
[21] WANG S. Novel piston pressure carryover for dynamic analysis and designs of the axial piston pump [J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(2): 024504.
[22]KEMMETMLLER W, FUCHSHUMER F, KUGI A. Nonlinear pressure control of self supplied variable displacement axial piston pumps [J]. Control Engineering Practice, 2010, 18(1): 8493.
[23] 高锋. 飞机液压系统泵 管路振动特性研究[D]. 杭州:浙江大学, 2013.
GAO Feng. Investigation into the vibration characteristic of the pump and connected pipeline in the aircraft hydraulic system [D]. Hangzhou:Zhejiang University, 2013.
[24] SEENIRAJ G K, IVANTYSYNOVA M. Impact of valve plate design on noise, volumetric efficiency and control effort in an axial piston pump [C] ∥ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago:ASME, 2006: 77-84.
[25] KUMAR S G, IVANTYSYNOVA M. A multi parameter multi objective approach to reduce pump noise generation [J]. International Journal of Fluid Power, 2011, 12(1): 7.

[1] OUYANG Xiao-ping, ZHAO Tian-fei, LI Feng, YANG Shang-bao, ZHU Ying, YANG Hua-yong. Integral variable PI control on flow load simulator of aircraft hydraulic system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1111-1118.
[2] ZHAO Peng yu, CHEN Ying long, ZHOU Hua, YANG Hua yong. Potential energy recovery and energy management strategy of hydraulic hybrid excavator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 893-901.